L-Cysteine methyl ester hydrochloride
Need Assistance?
  • US & Canada:
    +
  • UK: +

L-Cysteine methyl ester hydrochloride

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

L-Cysteine methyl ester hydrochloride (L-CMEH),an alkylamine derivative, is an expectorants to increase mucous excretion and also inhibits binding of ethynylestradiol metabolites to protein and nucleic acids.

Category
L-Amino Acids
Catalog number
BAT-007992
CAS number
18598-63-5
Molecular Formula
C4H10ClNO2S
Molecular Weight
171.65
L-Cysteine methyl ester hydrochloride
IUPAC Name
methyl (2R)-2-amino-3-sulfanylpropanoate;hydrochloride
Synonyms
methyl (2R)-2-amino-3-sulfanylpropanoate;hydrochloride; cysteine methyl ester; Cytoclair; mecysteine; mecysteine hydrochloride; mecysteine hydrochloride, (DL)-isomer; mecysteine hydrochloride, (L)-isomer; methyl cysteine; Visclair
Appearance
White powder
Purity
95%
Melting Point
143-144ºC (dec.)
Boiling Point
197.2ºC at 760 mmHg
Storage
Store in a cool and dry place and at 0 - 4℃ for short term (days to weeks) or -72℃ for long term (months to years).
Solubility
Soluble to 10 mM in H2O
InChI
1S/C4H9NO2S.ClH/c1-7-4(6)3(5)2-8;/h3,8H,2,5H2,1H3;1H/t3-;/m0./s1
InChI Key
WHOHXJZQBJXAKL-DFWYDOINSA-N
Canonical SMILES
COC(=O)C(CS)N.Cl
1. PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons
Duk-Shin Lee,Ji-Eun Kim Cell Death Dis . 2018 Aug 29;9(9):869. doi: 10.1038/s41419-018-0910-5.
Dynamin-related protein 1 (DRP1) is a key molecule to regulate mitochondrial fission. DRP1 activity is modulated by phosphorylation and S-nitrosylation on serine and cysteine residues, respectively. However, it is still unexplored whether S-nitrosylation of DRP1 affects its phosphorylation. In the present study, we found that Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, a NOS inhibitor) abolished S-nitrosylated (SNO-DRP1) and DRP1-serine (S) 616 phosphorylation levels in CA1 neurons under physiological condition. L-NAME led to mitochondrial elongation. In spite of the sustained NO synthesis, status epilepticus (a prolonged seizure activity, SE) diminished SNO-DRP1 and DRP1-S616 levels in CA1 neurons, accompanied by the reduced protein disulfide isomerase (PDI) expression and mitochondrial elongation. SE did not influence thioredoxin 1 (Trx1, a denitrosylating enzyme) activity, which was unaffected by L-NAME under physiological and post-SE condition. PDI knockdown decreased SNO-DRP1 and DRP1-S616 levels concomitant with mitochondrial elongation in CA1 neurons without altered NO synthesis under physiological condition. These findings indicate that PDI may be a NO donor of DRP1 to regulate DRP1-S616 phosphorylation, independent of Trx1 activity. Therefore, we suggest that PDI-mediated S-nitrosylation of DRP1 may be one of the major regulatory modifications for mitochondrial dynamics.
2. Caveolin-1-Mediated Tumor Suppression Is Linked to Reduced HIF1α S-Nitrosylation and Transcriptional Activity in Hypoxia
Andrew F G Quest,Pamela Contreras,Manuel Valenzuela-Valderrama,Carlos Sanhueza,Álvaro Lladser,América Campos,Rolf Kiessling,Lorena Lobos-González,Jimena Castillo Bennett,Sergio Wehinger,Lisette Leyton Cancers (Basel) . 2020 Aug 20;12(9):2349. doi: 10.3390/cancers12092349.
Caveolin-1 (CAV1) is a well-established nitric oxide synthase inhibitor, whose function as a tumor suppressor is favored by, but not entirely dependent on, the presence of E-cadherin. Tumors are frequently hypoxic and the activation of the hypoxia-inducible factor-1α (HIF1α) promotes tumor growth. HIF1α is regulated by several post-translational modifications, including S-nitrosylation. Here, we evaluate the mechanisms underlying tumor suppression by CAV1 in cancer cells lacking E-cadherin in hypoxia. Our main findings are that CAV1 reduced HIF activity and Vascular Endothelial Growth Factor expressionin vitroandin vivo. This effect was neither due to reduced HIF1α protein stability or reduced nuclear translocation. Instead, HIF1α S-nitrosylation observed in hypoxia was diminished by the presence of CAV1, and nitric oxide synthase (NOS) inhibition by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) reduced HIF1α transcriptional activity in cells to the same extent as observed upon CAV1 expression. Additionally, arginase inhibition by (S)-(2-Boronoethyl)-L-cysteine (BEC) partially rescued cells from the CAV1-mediated suppression of HIF1α transcriptional activity.In vivo, CAV1-mediated tumor suppression was dependent on NOS activity. In summary, CAV1-dependent tumor suppression in the absence of E-cadherin is linked to reduced HIF1α transcriptional activity via diminished NOS-mediated HIF1α S-nitrosylation.
3. Acrolein but not its metabolite, 3-Hydroxypropylmercapturic acid (3HPMA), activates vascular transient receptor potential Ankyrin-1 (TRPA1): Physiological to toxicological implications
Z Xie,D J Conklin,P Lorkiewicz,S Srivastava,A Bhatnagar,L Jin Toxicol Appl Pharmacol . 2021 Sep 1;426:115647. doi: 10.1016/j.taap.2021.115647.
Acrolein, an electrophilic α,β-unsaturated aldehyde, is present in foods and beverages, and is a product of incomplete combustion, and thus, reaches high ppm levels in tobacco smoke and structural fires. Exposure to acrolein is linked with cardiopulmonary toxicity and cardiovascular disease risk. The hypothesis of this study is the direct effects of acrolein in isolated murine blood vessels (aorta and superior mesenteric artery, SMA) are transient receptor potential ankyrin-1 (TRPA1) dependent. Using isometric myography, isolated aorta and SMA were exposed to increasing levels of acrolein. Acrolein inhibited phenylephrine (PE)-induced contractions (approximately 90%) in aorta and SMA of male and female mice in a concentration-dependent (0.01-100 μM) manner. The major metabolite of acrolein, 3-hydroxypropylmercapturic acid (3HPMA), also relaxed PE-precontracted SMA. As the SMA was 20× more sensitive to acrolein than aorta (SMA EC500.8 ± 0.2 μM; aorta EC50> 29.4 ± 4.4 μM), the mechanisms of acrolein-induced relaxation were studied in SMA. The potency of acrolein-induced relaxation was inhibited significantly by: 1) mechanically-impaired endothelium; 2) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); 3) guanylyl cyclase (GC) inhibitor (ODQ); and, 4) a TRPA1 antagonist (A967079). TRPA1 positive immunofluorescence was present in the endothelium. Compared with other known TRPA1 agonists, including allyl isothiocyanate (AITC), cinnamaldehyde, crotonaldehyde, and formaldehyde, acrolein stimulated a more potent TRPA1-dependent relaxation. Acrolein, at high concentration [100 μM], induced tension oscillations (spasms) independent of TRPA1 in precontracted SMA but not in aorta. In conclusion, acrolein is vasorelaxant at low levels (physiological) yet vasotoxic at high levels (toxicological).
4. Implication of nitric oxide and hydrogen sulfide signalling in alleviating arsenate stress in rice seedlings
Vipul Mishra,Vijay Pratap Singh Environ Pollut . 2021 Dec 15;291:117958. doi: 10.1016/j.envpol.2021.117958.
Nitric oxide (NO) and hydrogen sulfide (H2S) since their discovery have proven to be game changing molecules in alleviating abiotic stress. They individually play role in plant stress management while the pathways of stress regulation through their crosstalk remain elusive. The current study focuses on investigating the interplay of NO and H2S signalling in the amelioration of arsenate As(V) toxicity in rice seedlings and managing its growth, photosynthesis, sucrose and proline metabolism. Results show that As(V) exposure declined fresh weight (biomass) due to induced cell death in root tips. Moreover, a diminished RuBisCO activity, decline in starch content with high proline dehydrogenase activity and increased total soluble sugars content was observed which further intensified in the presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, an inhibitor of nitric oxide synthase-like activity), and DL-propargylglycine (PAG, an inhibitor of cysteine desulfhydrase activity). These results correlate with lower endogenous level of NO and H2S. Addition of L-NAME increased As(V) toxicity. Interestingly, addition of SNP reverses effect of L-NAME suggesting that endogenous NO has a role in mitigating As(V) toxicity. Similarly, exogenous H2S also significantly alleviated As(V) stress, while PAG further stimulated As(V) toxicity. Furthermore, application of H2S in the presence of L - NAME and NO in the presence of PAG could still mitigate As(V) toxicity, suggesting that endogenous NO and H2S could independently mitigate As(V) stress.
5. Fabrication Of Gold Nanoparticles In Absence Of Surfactant As In Vitro Carrier Of Plasmid DNA
Mohamed Magdy,Ahmed Khairy,Rania S Abdel-Rashid,Mohammed S Teiama,Badawi Anis,Samia M Omar Int J Nanomedicine . 2019 Oct 22;14:8399-8408. doi: 10.2147/IJN.S226498.
Purpose:This work aimed to synthesize surfactant-free AuNPs for targeted delivery of plasmid DNA encoded p53 gene and to avoid conventional production method of Gold nanoparticles (AuNPs) which may adversely affect the final shape, diversity, and size due to accumulation of the formulated surfactant - gold complex to the surface.Methods:The AuNPs were fabricated using seeded-growth method with L-Cystine methyl ester hydrochloride as capping agent, then loaded with plasmid DNA encoded p53 gene. The resultant AuNPs and AuNPs-p53 complex were evaluated for physical characteristics and morphology. Confirmation of complex formation was performed using gel electrophoresis. Furthermore, the efficient delivery and cytotoxicity behavior of the encoded gene were examined on both healthy lung cells (WI38) and cancerous lung cells (A549).Results:L-cysteine methyl ester hydrochloride AuNPs showed acceptable physical characteristics (30 nm, +36.9 mv, and spherical morphology). P53 attachment to AuNPs was confirmed by gel electrophoresis. The RT-PCR proved the overexpression of p53 by the fabricated AuNPs-p53 complex. The high percentage of cell viability in normal lung cell line (WI 38) proved the safety of L-cysteine methyl ester functionalized AuNPs. Additionally, the apoptotic effect due to expression of p53 gene loaded on AuNPs was only prominent in lung cancer cell line (A549), revealing selectivity and targeting efficiency of anticancer AuNPs-p53 complex.Conclusion:AuNPs can be considered as a potential delivery system for effective transfection of plasmid DNA which can be used for successful treatment of cancer.
6. Surface-enhanced Raman scattering spectroscopy of explosive 2,4-dinitroanisole using modified silver nanoparticles
Jumin Hao,Xiaoguang Meng,Zhonghou Xu,Fasheng Li,Washington Braida,David Strickland Langmuir . 2011 Nov 15;27(22):13773-9. doi: 10.1021/la202560t.
2,4-Dinitroanisole (DNAN) is being used as a replacement for 2,4,6-trinitrotoluene (TNT) as a less-sensitive melt-cast medium explosive than TNT. In this paper, we studied the surface-enhanced Raman spectroscopy (SERS) analysis of DNAN using Ag nanoparticles (AgNPs) modified by L-cysteine methyl ester hydrochloride. Due to the formation of a Meisenheimer complex between DNAN and the modifier, the modified AgNPs can detect 20 μg/L (0.2 ng) and 0.1 mg/L (1 ng) DNAN in deionized water and aged tap water, respectively. Three other chemicals (L-cysteine, N-acetyl-L-cysteine, and L-cysteine ethyl ester hydrochloride) were used as AgNPs modifiers to study the mechanism of the SERS of DNAN. It was confirmed that the amino group of L-cysteine methyl ester hydrochloride was the active group and that the methyl ester group significantly contributed to the high SERS sensitivity of DNAN. In order to further test the mechanism of Meisenheimer complex formation, the effect of anions and cations present in natural water on the SERS of DNAN was studied. It was found that CO(3)(2-), Cl(-), and K(+) at 100 mg/L did not negatively affect the SERS of 10 mg/L DNAN, while SO(4)(2-), Na(+), Mg(2+), and Ca(2+) at 100 mg/L significantly quenched the SERS of 10 mg/L DNAN. The negative effect of the bivalent cations could be offset by SO(4)(2-).
7. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes
Silpa Sabnam,Arttatrana Pal,Sweta Pal,Huma Rizwan Chem Biol Interact . 2020 Apr 25;321:109031. doi: 10.1016/j.cbi.2020.109031.
Reactive oxygen species (ROS) is mainly produced as a by-product from electron transport chain (ETC) of mitochondria and effectively eliminated by cellular antioxidants. However, 2-chloroethyl ethyl sulfide (CEES) exposure to keratinocytes declined antioxidant capacity and increased accumulation of ROS triggered alteration of mitochondrial activity and apoptosis is lacking. Our findings demonstrated that the electron leakage from the impaired ETC, leading to the accumulation of ROS was gradually elevating with increasing concentration of CEES exposure, which decline the activity of superoxide dismutase (SOD), manganese SOD (MnSOD) and copper-zinc SOD (Cu-ZnSOD) in keratinocytes. Further, excess accumulation of ROS, decreased the mitochondrial membrane potential (ΔΨm) and increased the mitochondrial mass with increasing dose of CEES. CEES exposure provoked the decrease in expression of transcription factor A mitochondrial (TFAM), augmented mitochondrial DNA (mtDNA) damage and altered the mtDNA-encoded oxidative phosphorylation (OXPHOS) subunits. Moreover, fragmented mtDNA translocated into cytosol, where it activated cGAS-STING and interferon regulatory factor3 (IRF3), coinciding with the increased expression of inflammatory mediators and alteration of cell-to-cell communication markers. Pre-treatment of N-acetyl-l-cysteine (NAC) or L-Nω-nitroarginine methyl ester (NAME), hydralazine hydrochloride (Hyd·HCl) or ERK1/2 or phosphoinositide3-kinase (PI3-K)/Akt inhibitors in keratinocyte cells significantly restored the CEES effect. Our findings suggest that CEES-induced mitochondrial ROS production and accumulation leads to mitochondrial dysfunction and inflammatory response in keratinocytes. However, treatment of antioxidants or ERK1/2 or PI3-K/Akt inhibitors is a novel therapeutic option for the keratinocytes complication.
8. Design, Synthesis, and Safener Activity of Novel Methyl (R)-N-Benzoyl/Dichloroacetyl-Thiazolidine-4-Carboxylates
Li-Xia Zhao,Chun-Yan Li,Ying Fu,Hao Wu,Yue-Li Zou,Qing-Rui Wang,Fei Ye Molecules . 2018 Jan 12;23(1):155. doi: 10.3390/molecules23010155.
A series of novel methyl (R)-N-benzoyl/dichloroacetyl-thiazolidine-4-carboxylates were designed by active substructure combination. The title compounds were synthesized using a one-pot route from l-cysteine methyl ester hydrochloride, acyl chloride, and ketones. All compounds were characterized by IR, ¹H NMR,13C NMR, and HRMS. The structure of4qwas determined by X-ray crystallography. The biological tests showed that the title compounds protected maize from chlorimuron-ethyl injury to some extent. The ALS activity assay showed that the title compounds increased the ALS activity of maize inhibited by chlorimuron-ethyl. Molecular docking modeling demonstrated that Compound4ecompeted against chlorimuron-ethyl to combine with the herbicide target enzyme active site, causing the herbicide to be ineffective.
9. Protein disulfide isomerase-mediated S-nitrosylation facilitates surface expression of P2X7 receptor following status epilepticus
Duk-Shin Lee,Ji-Eun Kim J Neuroinflammation . 2021 Jan 6;18(1):14. doi: 10.1186/s12974-020-02058-y.
Background:P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel playing important roles in a variety of physiological functions, including inflammation, and apoptotic or necrotic cell death. An extracellular domain has ten cysteine residues forming five intrasubunit disulfide bonds, which are needed for the P2X7R trafficking to the cell surface and the recognition of surface epitopes of apoptotic cells and bacteria. However, the underlying mechanisms of redox/S-nitrosylation of cysteine residues on P2X7R and its role in P2X7R-mediated post-status epilepticus (SE, a prolonged seizure activity) events remain to be answered.Methods:Rats were given pilocarpine (380 mg/kg i.p.) to induce SE. Animals were intracerebroventricularly infused Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, a NOS inhibitor) 3 days before SE, or protein disulfide isomerase (PDI) siRNA 1 day after SE using an osmotic pump. Thereafter, we performed Western blot, co-immunoprecipitation, membrane fraction, measurement of S-nitrosylated (SNO)-thiol and total thiol, Fluoro-Jade B staining, immunohistochemistry, and TUNEL staining.Results:SE increased S-nitrosylation ratio of P2X7R and the PDI-P2X7R bindings, which were abolished by L-NAME and PDI knockdown. In addition, both L-NAME and PDI siRNA attenuated SE-induced microglial activation and astroglial apoptosis. L-NAME and PDI siRNA also ameliorated the increased P2X7R surface expression induced by SE.Conclusions:These findings suggest that PDI-mediated redox/S-nitrosylation may facilitate the trafficking of P2X7R, which promotes microglial activation and astroglial apoptosis following SE. Therefore, our findings suggest that PDI-mediated regulations of dynamic redox status and S-nitrosylation of P2X7R may be a critical mechanism in the neuroinflammation and astroglial death following SE.
10. L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta
Emily S W Wong,Susan W S Leung,Paul M Vanhoutte,Ricky Y K Man,Kwok F J Ng Anesthesiology . 2018 Mar;128(3):564-573. doi: 10.1097/ALN.0000000000002032.
Background:The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine.Methods:Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed.Results:Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4).Conclusions:These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of dexmedetomidine by L-arginine depends on arginase activity and the production of urea and ornithine.
Online Inquiry
Verification code
Inquiry Basket