L-Histidine
Need Assistance?
  • US & Canada:
    +
  • UK: +

L-Histidine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

L-Histidine is an essential amino acid and one of the 22 proteinogenic amino acids. L-Histidine plays a role in the production of histamine and blood cell. It exhibits anti-oxidant, anti-inflammatory and anti-secretory properties.
Protein supplement in health care products.

Category
L-Amino Acids
Catalog number
BAT-014306
CAS number
71-00-1
Molecular Formula
C6H9N3O2
Molecular Weight
155.20
L-Histidine
IUPAC Name
(2S)-2-amino-3-(1H-imidazol-5-yl)propanoic acid
Synonyms
Histidine, L-; Histidine; H-His-OH; Glyoxaline-5-alanine; Anti-rheuma; (2S)-2-Amino-3-(1H-imidazol-4-yl)propanoic acid; (2S)-2-Azaniumyl-3-(1H-imidazol-5-yl)propanoate; (S)-2-Amino-3-(1H-imidazol-4-yl)propanoic acid; (S)-4-(2-Amino-2-carboxyethyl)imidazole; (S)-Histidine; (S)-α-Amino-1H-imidazole-4-propanoic acid; 1H-Imidazole-4-alanine, (S)-; 1H-Imidazole-4-propanoic acid, α-amino-, (S)-; L-(-)-Histidine; L-Alanine, 3-(1H-imidazol-4-yl)-; NSC 137773
Related CAS
150-35-6 (Deleted CAS) 7006-35-1 (Deleted CAS) 35479-49-3 (Deleted CAS) 35558-59-9 (Deleted CAS) 45955-20-2 (Deleted CAS) 54166-13-1 (Deleted CAS) 155304-24-8 (Deleted CAS) 736075-03-9 (Deleted CAS)
Appearance
White to Off-White Solid
Purity
98%
Density
1.423±0.06 g/cm3
Melting Point
287°C (dec.)
Boiling Point
458.9±35.0°C at 760 mmHg
Storage
Store at RT
Solubility
Soluble in Aqueous Acid (Slightly, Sonicated), Water (Sparingly, Heated, Sonicated)
Application
Ingredient of health care products.
InChI
InChI=1S/C6H9N3O2/c7-5(6(10)11)1-4-2-8-3-9-4/h2-3,5H,1,7H2,(H,8,9)(H,10,11)/t5-/m0/s1
InChI Key
HNDVDQJCIGZPNO-YFKPBYRVSA-N
Canonical SMILES
C1=C(NC=N1)CC(C(=O)O)N
1.[Effects of ß-alanine supplementation on athletic performance].
Domínguez R;Hernández Lougedo J;Maté-Muñoz JL;Garnacho-Castaño MV Nutr Hosp. 2014 Oct 6;31(1):155-69. doi: 10.3305/nh.2015.31.1.7517.
in ;English;, ;Spanish;La carnosina, dipéptido formado por los aminoácidos ß-alanina y L-histidina, tiene importantes funciones fisiológicas entre las que destaca su función antioxidante y las relacionadas con la memoria y el aprendizaje. Sin embargo, en relación con el ejercicio, las funciones más importantes serían las relacionadas con la contractilidad muscular, al mejorar la sensibilidad al calcio en las fibras musculares, y la función reguladora del pH. De este modo, se ha propuesto que la carnosina es el principal tampón intracelular, pudiendo llegar a contribuir hasta un 7-10% en la capacidad buffer o tampón. Dado que la síntesis de carnosina parece estar limitada por la disponibilidad de ß-alanina, la suplementación con este compuesto ha ido ganando cada vez más popularidad entre la población deportista. Por ello, el objetivo del presente estudio de revisión bibliográfica ha sido el de estudiar todos aquellos trabajos de investigación que han comprobado el efecto de la suplementación con ß-alanina sobre el rendimiento deportivo. Por otra parte, también, se ha intentado establecer una posología específica que, maximizando los posibles efectos beneficiosos, reduzca al mínimo la parestesia, el principal efecto secundario presentado como respuesta a la suplementación.
2.Histidine and not tyrosine is required for the peroxide-induced formation of haem to protein cross-linked myoglobin.
Reeder BJ;Cutruzzolà F;Bigotti MG;Watmough NJ;Wilson MT IUBMB Life. 2007 Aug-Sep;59(8-9):477-89.
Peroxide-induced oxidative modifications of haem proteins such as myoglobin and haemoglobin can lead to the formation of a covalent bond between the haem and globin. These haem to protein cross-linked forms of myoglobin and haemoglobin are cytotoxic and have been identified in pathological conditions in vivo. An understanding of the mechanism of haem to protein cross-link formation could provide important information on the mechanisms of the oxidative processes that lead to pathological complications associated with the formation of these altered myoglobins and haemoglobins. We have re-examined the mechanism of the formation of haem to protein cross-link to test the previously reported hypothesis that the haem forms a covalent bond to the protein via the tyrosine 103 residue (Catalano, C. E., Choe, Y. S., Ortiz de Montellano, P. R., J. Biol. Chem. 1989, 10534 - 10541). Comparison of native horse myoglobin, recombinant sperm whale myoglobin and Tyr(103) --> Phe sperm whale mutant shows that, contrary to the previously proposed mechanism of haem to protein cross-link formation, the absence of tyrosine 103 has no impact on the formation of haem to protein cross-links. In contrast, we have found that engineered myoglobins that lack the distal histidine residue either cannot generate haem to protein cross-links or show greatly suppressed levels of modified protein.
3.Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.
Hespen CW;Bruegger JJ;Guo Y;Marletta MA ACS Chem Biol. 2018 Jun 15;13(6):1631-1639. doi: 10.1021/acschembio.8b00248. Epub 2018 May 29.
Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK.
Online Inquiry
Verification code
Inquiry Basket