L-Lysine acetate salt
Need Assistance?
  • US & Canada:
    +
  • UK: +

L-Lysine acetate salt

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
L-Amino Acids
Catalog number
BAT-007703
CAS number
57282-49-2
Molecular Formula
C6H14N2O2·C2H4O2
Molecular Weight
206.24
L-Lysine acetate salt
IUPAC Name
acetic acid;(2S)-2,6-diaminohexanoic acid
Alternative CAS
52315-76-1
Synonyms
acetic acid;(2S)-2,6-diaminohexanoic acid; Lysine acetate; L-Lysine monoacetate; L-LYSINE ACETATE SALT; Lysine, monoacetate; (S)-2,6-diaminohexanoic acid compound with acetic acid
Related CAS
56-87-1 (free base)
Appearance
White crystalline powder
Purity
98.0-102.0% (Assay, dried basis)
Storage
Store at 2-8 °C
InChI
InChI=1S/C6H14N2O2.C2H4O2/c7-4-2-1-3-5(8)6(9)10;1-2(3)4/h5H,1-4,7-8H2,(H,9,10);1H3,(H,3,4)/t5-;/m0./s1
InChI Key
RRNJROHIFSLGRA-JEDNCBNOSA-N
Canonical SMILES
CC(=O)O.C(CCN)CC(C(=O)O)N
1. A review of Formulations of Commercially Available Antibodies
Robert G Strickley, William J Lambert J Pharm Sci. 2021 Jul;110(7):2590-2608.e56. doi: 10.1016/j.xphs.2021.03.017. Epub 2021 Mar 28.
This review identified 126 commercially available antibodies approved globally between 1986 and February 2021 including 10 antibody drug conjugates, 16 biosimilars, and 3 antibody fragments. Prior to 2014 there were ≤ 5 approved each year, but after 2014 there have been ≥ 7 approved each year with the years 2017, 2019 and 2020 having the most at 17 each. A total of 136 products were identified of which 36 are lyophilized powders and 100 are solutions. The routes of administration are mainly subcutaneous or intravenous infusion with three intravenous bolus, two intravitreal, and one intramuscular. The subcutaneous products are ready-to-use solutions or reconstituted lyophilized powders that do not require dilution while most intravenous products are concentrates that require dilution into saline or another intravenous fluid prior to infusion. Most are packaged in single-dose units and the exception of multi-use is Herceptin® and its biosimilars. The package configurations are vials, prefilled autoinjectors, or prefilled syringes. A typical antibody formulation contains an antibody, an excipient to adjust tonicity or osmolality for solutions or a lyoprotectant for lyophilized powders, a buffer, and a surfactant. The ionic tonicity-adjusting excipient is mainly sodium chloride and the non-ionic osmolality-adjusting excipients include sucrose, trehalose, mannitol, maltose, and sorbitol. The lyoprotectants are trehalose and sucrose. The pH range is 4.8-8.0 and the buffers or pH-modifying agents include histidine, citrate, succinate, acetate, phosphate, glutamate, adipic acid, aspartic acid, lactic acid, tromethamine, and 2-(N-morpholino)-ethanesulfonic acid. The surfactants include mostly polysorbate 20 or polysorbate 80, with four containing poloxamer 188, and one that does not contain a surfactant but contains PEG 3350. One product does not contain a buffer, and 12 do not contain a surfactant. The viscosity-lowering excipients are sodium chloride and the amino acids arginine, glycine, proline, and lysine. Arginine may also function to adjust ionic strength and minimize aggregation. Human serum albumin is used in 2 products for intravenous infusion. Other excipients include methionine as an anti-oxidant, and EDTA or DTPA as chelating agents. The maximum volume of subcutaneous injection is 15 mL administered over 3-5 minutes, but the typically volume is 0.5-2 mL. Five fixed-dose combinations have recently been approved and four contain hyaluronidase to assist the large volume subcutaneous injection of up to 15 mL, while one is a fixed-dose combination for intravenous with three antibodies. Prefilled autoinjectors and syringes are becoming more common and many come affixed with a needle of 27-gauge or 29-gauge, while a few have a 26-gauge or a 30-gauge needle. Recent advancements include hyaluronidase to assist the large subcutaneous injection volume of 5-15 mL, fixed-dose combinations, buffer-free formulation, and smaller subcutaneous injection volume (0.1 mL).
2. Endothelial SIRT6 Is Vital to Prevent Hypertension and Associated Cardiorenal Injury Through Targeting Nkx3.2-GATA5 Signaling
Jian Guo, et al. Circ Res. 2019 May 10;124(10):1448-1461. doi: 10.1161/CIRCRESAHA.118.314032.
Rationale: Endothelial dysfunction is an important determinant risk factor for the development of hypertension and its complications. Thus, identification of potential therapeutic targets for preventing endothelial dysfunction has major clinical importance. Emerging evidence indicates that epigenetic modifications are closely associated with the regulation of endothelial function. Among them, HDAC (histone deacetylase)-mediated epigenetic processes in vascular homeostasis and cardiovascular disease have attracted much attention. SIRT6 (sirtuin 6) is one member of SIRTs (class III HDAC) that are highly conserved NAD+-dependent deacetylases. Objective: This study was designed to elucidate the role of SIRT6 in the pathogenesis of hypertension, discover the new targets of SIRT6, and explore related mechanisms on the regulation of endothelial function. Methods and results: The levels of endothelial SIRT6 were significantly reduced in 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Utilizing genetically engineered endothelial-specific SIRT6 knockout (Cre+/SIRT6fl/fl) mice, we found that endothelial-specific deletion of SIRT6 significantly enhanced blood pressure, exacerbated endothelial dysfunction and cardiorenal injury in experimental hypertension. Functionally, SIRT6 has pleiotropic protective actions in endothelial cells, which include promoting endothelium-dependent vasodilatation and vascular NO bioavailability, reducing cellular permeability, ameliorating endothelial senescence and apoptosis, and facilitating autophagy. Mechanistically, SIRT6 induced the expression of GATA5 (GATA-binding protein 5), a novel regulator of blood pressure, through inhibiting Nkx3.2 (NK3 homeobox 2) transcription by deacetylating histone H3K9 (histone H3 lysine 9), thereby regulating GATA5-mediated signaling pathways to prevent endothelial injury. Finally, we provide direct evidence for the therapeutic potential of SIRT6 in desoxycorticosterone acetate/salt-induced hypertensive mice by overexpression of SIRT6 in vivo. Conclusions: This study for the first time demonstrates that SIRT6 prevents hypertension and its complications by maintaining endothelial function. Pharmacological targeting of SIRT6 may be an innovative therapeutic strategy for treating patients with hypertension.
Online Inquiry
Verification code
Inquiry Basket