L-Lysine methyl ester dihydrochloride (BAT-004003)
* For research use only

Used in the synthesis of peptides containing histidine and lysine.

Category
L-Amino Acids
Catalog number
BAT-004003
CAS number
26348-70-9
Molecular Formula
C7H16N2O2·2HCl
Molecular Weight
233.10
L-Lysine methyl ester dihydrochloride
Synonyms
L-Lys-OMe 2HCl; DL-lysine methyl ester dihydrochloride; L-2,6-diaminohexanoic acid methyl ester dihydrochloride; LysOMe dihydrochloride; L-Lysine methyl ester 2HCl; H-Lys-OMe 2HCl
Appearance
White powder
Purity
≥ 99% (HPLC)
Density
1.031 g/cm3
Melting Point
192-196 °C
Boiling Point
243.9 °C at 760 mmHg
Storage
Store at 2-8 °C
InChI
InChI=1S/C7H16N2O2.2ClH/c1-11-7(10)6(9)4-2-3-5-8;;/h6H,2-5,8-9H2,1H3;2*1H/t6-;;/m0../s1
InChI Key
SXZCBVCQHOJXDR-ILKKLZGPSA-N
Canonical SMILES
COC(=O)C(CCCCN)N.Cl.Cl
1.Modulation of neutrophil phospholipase C activity and cyclic AMP levels by fMLP-OMe analogues.
Ferretti ME1, Nalli M, Biondi C, Colamussi ML, Pavan B, Traniello S, Spisani S. Cell Signal. 2001 Apr;13(4):233-40.
The N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-OMe (1) analogues for-Thp-Leu-Ain-OMe (2), for-Thp-Leu-Phe-OMe (3), for-Met-Leu-Ain-OMe (4), for-Met-Delta(z)Leu-Phe-OMe (5), for-Met-Lys-Phe-For-Met-Lys-Phe (6), for-Met-Leu-Pheol-COMe (7), and for-Nle-Leu-Phe-OMe (8) have been studied. Some of these have been found selective towards the activation of different biological responses of human neutrophils. In particular, peptides 2 and 3, which evoke only chemotaxis, are ineffective in enhancing inositol phosphate, as well as cyclic AMP (cAMP) levels. On the contrary, analogues 5 and 7, which induce superoxide anion production and degranulation, but not chemotaxis, significantly increase the levels of the two intracellular messengers, as is the case of the full agonists 1 and 6. The Ca(2+) ionophore A23187 also activates phospholipase C (PLC) and increases the nucleotide levels; when tested in combination with peptide 1 or 5, a supra-additive enhancement of cAMP concentration is obtained.
2.Sonication-induced coiled fibrous architectures of Boc-L-Phe-L-Lys(Z)-OMe.
Afrasiabi R1, Kraatz HB. Chemistry. 2013 Jan 28;19(5):1769-77. doi: 10.1002/chem.201202268. Epub 2012 Dec 19.
An ultra-short peptide Boc-L-Phe-L-Lys(Z)-OMe (Z=carbobenzyloxy) was shown to act as a highly efficient and versatile low molecular weight gelator (LMWG) for a variety of aliphatic and aromatic solvents under sonication. Remarkably, this simple dipeptide is not only able to form coiled fibres but also demonstrates self-healing and thermal chiroptical switching behaviour. The formation of coiled assemblies was found to be influenced by the nature of the solvent and the presence of an additive. By exploiting these properties it was possible to modulate the macroscopic and microscopic properties of the organogels of this ultra-short peptide, allowing the formation of highly ordered single-domain networks of helical fibres with dimeric or alternatively fibre-bundle morphology. The organogels were characterized by using FTIR, SEM, NMR and circular dichroism (CD) spectroscopy. Interestingly, CD experiments showed that the organogels of Boc-L-Phe-L-Lys(Z)-OMe in aromatic solvents exhibit thermal chiroptical switching.
3.Radical acylation of L-lysine derivatives and L-lysine-containing peptides by peroxynitrite-treated diacetyl and methylglyoxal.
Tokikawa R1, Loffredo C, Uemi M, Machini MT, Bechara EJ. Free Radic Res. 2014 Mar;48(3):357-70. doi: 10.3109/10715762.2013.871386. Epub 2014 Jan 7.
Highly electrophilic α-dicarbonyls such as diacetyl, methylglyoxal, 3-deoxyglucosone, and4,5-dioxovaleric acid have been characterized as secondary catabolites that can aggregate proteins and form DNA nucleobase adducts in several human maladies, including Alzheimer's disease, rheumatoid arthritis, diabetes, sepsis, renal failure, and respiratory distress syndrome. In vitro, diacetyl and methylglyoxal have also been shown to rapidly add up the peroxynitrite anion (k2 ~ 10(4)-10(5) M(-1) s(-1)), a potent biological nucleophile, oxidant and nitrosating agent, followed by carbon chain cleavage to carboxylic acids via acetyl radical intermediate that can modify amino acids. In this study, we used the amino acid derivatives Ac-Lys-OMe and Z-Lys-OMe and synthesized the tetrapeptides H-KALA-OH, Ac-KALA-OH, and H-K(Boc)ALA-OH to reveal the preferential Lys amino group targeted by acyl radical generated by the α-dicarbonyl/peroxynitrite system. The pH profiles of the reactions are bell-shaped, peaking at approximately 7.
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Quick Inquiry
Verification code
Inquiry Basket