L-Serine ethyl ester hydrochloride
Need Assistance?
  • US & Canada:
    +
  • UK: +

L-Serine ethyl ester hydrochloride

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
L-Amino Acids
Catalog number
BAT-003924
CAS number
26348-61-8
Molecular Formula
C5H11O3N·HCl
Molecular Weight
169.62
L-Serine ethyl ester hydrochloride
IUPAC Name
ethyl (2S)-2-amino-3-hydroxypropanoate;hydrochloride
Synonyms
L-Ser-OEt HCl; L-β-Hydroxyalanine ethyl ester hydrochloride; ethyl(2S)-2-amino-3-hydroxypropanoate hydrochloride; L-Serineethylesterhydrochloride; Ethyl L-serinate hydrochloride; H-Ser-OEt HCl; L-Serine Ethyl Ester Hydrochloride; H-Ser-Oet HCl
Appearance
Off-white or beige solid
Purity
≥ 99.5% (Chiral purity)
Melting Point
125-135 °C
Boiling Point
247.9 °C at 760 mmHg
Storage
Store at 2-8 °C
InChI
InChI=1S/C5H11NO3.ClH/c1-2-9-5(8)4(6)3-7;/h4,7H,2-3,6H2,1H3;1H/t4-;/m0./s1
InChI Key
JZJQCLZQSHLSFB-WCCKRBBISA-N
Canonical SMILES
CCOC(=O)C(CO)N.Cl
1. The discovery of shorter synthetic proteolytic peptides derived from Tob1 protein
Rina Nakamura, Motomi Konishi, Masanari Taniguchi, Yusuke Hatakawa, Toshifumi Akizawa Peptides. 2019 Jun;116:71-77. doi: 10.1016/j.peptides.2019.03.005. Epub 2019 Mar 28.
We screened nearly 1000 synthetic peptides and found that JAL-AK22 (KYEGHWYPEKPYKGSGFRCIHI), which is derived from the BoxA domain in the Tob1 protein, activates both unfolded and folded proMMP-7. Interestingly, the smaller derivative of JAL-AK22, termed JAL-TA9 (YKGSGFRMI) possessed auto-proteolytic activity and cleaved three synthetic peptides fragment (MMP18-33, MMP18-40, and Aβ11-29) under physiological conditions. The kcat of JAL-TA9 was 4.58 × 10-4 min-1 against MMP18-33 and 6.5 × 10-4 min-1 against MMP18-40. These kinetic parameters are lower than those of general proteinases like trypsin, for which the kcat is 247.2 × 105 min-1 against benzoyl-l-arginine ethyl ester. In addition, a 5-mer peptide derived from JAL-TA9, GSGFR also cleaved Aβ11-29. These proteolytic activities were inhibited by AEBSF (4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride), a serine protease inhibitor. Our results demonstrate that some small synthetic peptides have protease activity. Thus, we propose calling small peptides possessing with protease activity Catalytides (catalytic peptides). We expect that our findings will stimulate the development of novel Catalytides and related applications such as the development of strategic peptide drugs.
2. Kinetics of the hydrolysis of N-benzoyl-L-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses
C W Wharton, A Cornish-Bowden, K Brocklehurst, E M Crook Biochem J. 1974 Aug;141(2):365-381. doi: 10.1042/bj1410365.
1. N-Benzoyl-l-serine methyl ester was synthesized and evaluated as a substrate for bromelain (EC 3.4.22.4) and for papain (EC 3.4.22.2). 2. For the bromelain-catalysed hydrolysis at pH7.0, plots of [S(0)]/v(i) (initial substrate concn./initial velocity) versus [S(0)] are markedly curved, concave downwards. 3. Analysis by lattice nomography of a modifier kinetic mechanism in which the modifier is substrate reveals that concave-down [S(0)]/v(i) versus [S(0)] plots can arise when the ratio of the rate constants that characterize the breakdown of the binary (ES) and ternary (SES) complexes is either less than or greater than 1. In the latter case, there are severe restrictions on the values that may be taken by the ratio of the dissociation constants of the productive and non-productive binary complexes. 4. Concave-down [S(0)]/v(i) versus [S(0)] plots cannot arise from compulsory substrate activation. 5. Computational methods, based on function minimization, for determination of the apparent parameters that characterize a non-compulsory substrate-activated catalysis are described. 6. In an attempt to interpret the catalysis by bromelain of the hydrolysis of N-benzoyl-l-serine methyl ester in terms of substrate activation, the general substrate-activation model was simplified to one in which only one binary ES complex (that which gives rise directly to products) can form. 7. In terms of this model, the bromelain-catalysed hydrolysis of N-benzoyl-l-serine methyl ester at pH7.0, I=0.1 and 25 degrees C is characterized by K(m) (1) (the dissociation constant of ES)=1.22+/-0.73mm, k (the rate constant for the breakdown of ES to E+products, P)=1.57x10(-2)+/-0.32x10(-2)s(-1), K(a) (2) (the dissociation constant that characterizes the breakdown of SES to ES and S)=0.38+/-0.06m, and k' (the rate constant for the breakdown of SES to E+P+S)=0.45+/-0.04s(-1). 8. These parameters are compared with those in the literature that characterize the bromelain-catalysed hydrolysis of alpha-N-benzoyl-l-arginine ethyl ester and of alpha-N-benzoyl-l-arginine amide; K(m) (1) and k for the serine ester hydrolysis are somewhat similar to K(m) and k(cat.) for the arginine amide hydrolysis and K(as) and k' for the serine ester hydrolysis are somewhat similar to K(m) and k(cat.) for the arginine ester hydrolysis. 9. A previous interpretation of the inter-relationships of the values of k(cat.) and K(m) for the bromelain-catalysed hydrolysis of the arginine ester and amide substrates is discussed critically and an alternative interpretation involving substantial non-productive binding of the arginine amide substrate to bromelain is suggested. 10. The parameters for the bromelain-catalysed hydrolysis of the serine ester substrate are tentatively interpreted in terms of non-productive binding in the binary complex and a decrease of this type of binding by ternary complex-formation. 11. The Michaelis parameters for the papain-catalysed hydrolysis of the serine ester substrate (K(m)=52+/-4mm, k(cat.)=2.80+/-0.1s(-1) at pH7.0, I=0.1, 25.0 degrees C) are similar to those for the papain-catalysed hydrolysis of methyl hippurate. 12. Urea and guanidine hydrochloride at concentrations of 1m have only small effects on the kinetic parameters for the hydrolysis of the serine ester substrate catalysed by bromelain and by papain.
3. Identification of serine proteases from Leishmania braziliensis
Herbert L M Guedes, João M Neto Rezende, Mayra A Fonseca, Cristiane M C Salles, Bartira Rossi-Bergmann, Salvatore Giovanni De-Simone Z Naturforsch C J Biosci. 2007 May-Jun;62(5-6):373-81. doi: 10.1515/znc-2007-5-610.
Leishmania (V) braziliensis is one of the most important ethiologic agents of the two distinct forms of American tegumentary leishmaniasis (cutaneous and mucosal). The drugs of choice used in leishmaniasis therapy are significantly toxic, expensive and are associated with frequent refractory infections. Among the promising new targets for anti-protozoan chemotherapy are the proteases. In this study, serine proteases were partially purified from aqueous, detergent and extracellular extracts of Leishmania braziliensis promastigotes by aprotinin-agarose affinity chromatography. By zymography, the enzymes purified from the aqueous extract showed apparent activity bands of 60 kDa and 45 kDa; of 130 kDa, 83 kDa, 74 kDa and 30 kDa from the detergent extract; and of 62 kDa, 59 kDa, 57 kDa, 49 kDa and 35 kDa from the extracellular extract. All purified proteases exhibited esterase activity against Nalpha-benzoyl-L-arginine ethyl ester hydrochloride and Nalpha-p-tosyl-L-arginine methyl ester hydrochloride (serine protease substrates) and optimal activity at pH 8. 0. Proteases purified from the aqueous and extracellular extracts were effectively inhibited by benzamidine (trypsin inhibitor) and those from the detergent extract were inhibited by N-tosyl-L-phenyl-alanine chloromethyl ketone (chymotrypsin inhibitor) indicating that all these enzymes are serine proteases. These findings indicate that L. braziliensis serine proteases display some biochemical similarities with L. amazonensis serine proteases, demonstrating a conservation of this enzymatic class in the Leishmania genus. This is the first study to report the purification of a serine protease from Leishmania braziliensis.
Online Inquiry
Verification code
Inquiry Basket