1. Antiproteinases protect cultured lung endothelial cells from endotoxin injury
J Tumen, B Meyrick, L Berry Jr, K L Brigham J Appl Physiol (1985). 1988 Aug;65(2):835-43. doi: 10.1152/jappl.1988.65.2.835.
To determine whether the effects of endotoxin on cultured lung endothelium involve proteolytic mechanisms, we incubated bovine pulmonary arterial endothelial cells with endotoxin in medium 199 + 10% fetal bovine serum (FBS) in the presence and absence of several proteinase inhibitors. Three chloromethyl ketone (CK) derivatives [N-tosyl-L-lysine (CK)-(TLCK), N-tosyl-L-phenylalanine CK(TPCK), methoxysuccinyl-Ala-Ala-Pro-Val CK(SPCK)] and a single synthetic proteinase substrate [N-alpha-p-tosyl-L-arginine methyl ester hydrochloride (TAME)] attenuated endotoxin-induced cytotoxicity (lactate dehydrogenase release) and prostacyclin production in a dose-related fashion. The most effective inhibitors of endotoxin-induced cytotoxicity were TLCK and TPCK. TLCK and TAME most effectively attenuated endotoxin-stimulated prostacyclin production. Two chemically unrelated substances, soybean trypsin inhibitor and alpha 1 proteinase inhibitor also attenuated the endotoxin response. In the absence of FBS or in the presence of 10% heat-inactivated FBS, antiproteases attenuated endotoxin-induced prostacyclin production but had less effect on cytotoxicity than with 10% FBS. We also measured the capacity of the CK inhibitors to scavenge superoxide radicals generated in a cell-free xanthine/xanthine oxidase system by measuring inhibition of cytochrome c reduction. Percent scavenging of superoxide by these inhibitors was as follows: TLCK, 62.7 +/- 5.8 (SE); TPCK, 83.9 +/- 7.7; TAME, 24.5 +/- 6.4; SPCK, 0. We conclude that certain proteinase inhibitors attenuate endotoxin-induced endothelial cytotoxicity and prostacyclin production and that direct scavenging of superoxide radicals fails to explain the protective effects of proteinase inhibition. We speculate that the effects of endotoxin on lung endothelium may involve proteolytic mechanisms even in the absence of neutrophils.
2. Elastase from activated human neutrophils activates procarboxypeptidase R
Takeshi Kawamura, Noriko Okada, Hidechika Okada Microbiol Immunol. 2002;46(3):225-30. doi: 10.1111/j.1348-0421.2002.tb02690.x.
Carboxypeptidase R (EC 3.4.17.20; CPR) is an unstable basic carboxypeptidase found in fresh serum in addition to carboxypeptidase N (CPN) which is a stable enzyme. CPR in fresh serum is generated from its zymogen (proCPR) during coagulation by trypsin-like enzymes such as thrombin and thrombin/thrombomodulin complexes. Since removal of the C-terminal arginine abrogates the anaphylatoxin activity of C3a and C5a, CPR and CPN are regarded as anaphylatoxin inactivators. We report here that the culture supernatant of activated human neutrophils converts proCPR to CPR. Addition of an elastase specific inhibitor, N-methoxysuccinyl-Ala-Ala-Pro-Val-chloromethyl ketone (MSAAPVCK) to the supernatant of stimulated neutrophils completely inhibited activation of proCPR. On the other hand, a thrombin specific inhibitor, p-Nitrophenyl-p'-amidinophenyl-methanesulfonate hydrochloride (pNP-pAPMS) inhibited only 16% of proCPR activation by the neutrophil supernatant. Furthermore, purified elastase converted proCPR to CPR. Therefore, elastase can activate proCPR directly, or indirectly through activation of some proteases, which have been contaminating in reagents. Release of CPR generating enzymes from neutrophils should play an important role in regulation of excess inflammation.