Need Assistance?
  • US & Canada:
    +
  • UK: +

LCKLSL

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

LCKLSL is a competitive inhibitor of annexin A2 (AnxA2). It can effectively inhibit the binding of tissue plasminogen activator (tPA) and AnxA2. It can also inhibit the production of plasmin and has an anti-angiogenic effect.

Category
Peptide Inhibitors
Catalog number
BAT-009098
CAS number
533902-29-3
Molecular Formula
C30H57N7O8S
Molecular Weight
675.88
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2R)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]hexanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoic acid
Synonyms
LCKLSL; HY-P2333; AKOS040758181; 533902-29-3; CS-0130051
Sequence
Leu-Cys-Lys-Leu-Ser-Leu
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C30H57N7O8S/c1-16(2)11-19(32)25(39)37-24(15-46)29(43)33-20(9-7-8-10-31)26(40)34-21(12-17(3)4)27(41)36-23(14-38)28(42)35-22(30(44)45)13-18(5)6/h16-24,38,46H,7-15,31-32H2,1-6H3,(H,33,43)(H,34,40)(H,35,42)(H,36,41)(H,37,39)(H,44,45)/t19-,20-,21-,22-,23-,24-/m0/s1
InChI Key
HTBYABHLBWELKC-BTNSXGMBSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CS)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CC(C)C)C(=O)O)N
1. Activation of Annexin A2 signaling at the blood-brain barrier in a mouse model of multiple sclerosis
Kenta Tezuka, Masayoshi Suzuki, Risa Sato, Shohei Kawarada, Tetsuya Terasaki, Yasuo Uchida J Neurochem. 2022 Mar;160(6):662-674. doi: 10.1111/jnc.15578. Epub 2022 Feb 5.
Blood-brain barrier (BBB) dysfunction is a fundamental cause of multiple sclerosis and identifying the molecules that are responsible is an urgent matter. Protein expression was comprehensively quantified at the BBB of experimental autoimmune encephalomyelitis (EAE) mice, a model of multiple sclerosis, using the SWATH method. Concerning tight junction molecules, the level of expression of Claudin-5, which, in a previous immunohistochemical analysis, was confirmed to be down-regulated by EAE, remained unchanged, but the expression of Claudin-11 and Occludin was decreased by 0.69- and 0.62-fold, respectively, in brain capillaries isolated from EAE mice. A number of other cell-cell junctional molecules including ESAM, CADM1, CADM2, CADM3, CADM4, and HEPACAM were also down-regulated. The levels of expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1), which directly mediate the infiltration of lymphocytes across the BBB, were increased in EAE mice by 3.3- and 2.6-fold, respectively. The expression of CXADR, which possibly facilitates the adhesion of migrating cells, was also increased by 3.5-fold. Interestingly, various members of the Annexin A (ANXA) family were also up-regulated in brain capillaries that were isolated from EAE mice. In a pathway associated with cell infiltration and tight junction disruption, a series of molecules that are involved in ANXA2 signaling (ANXA2, PTP1B, Ahnak, S100A11, CD44, Kindlin2, Integrin α5, Fibronectin, Fibrinogen) were up-regulated. ANXA2 is selectively and abundantly expressed in endothelial cells in the brain. The daily administration of an ANXA2 inhibitor (LCKLSL peptide) significantly suppressed the development of EAE in mice. In summary, the activation of ANXA2 signaling at the BBB appear to play an important role in the pathogenesis of EAE.
2. Methionine-induced hyperhomocysteinemia reverts fibrinolytic pathway activation in a murine model of acute promyelocytic leukemia
Rafael H Jácomo, et al. Blood. 2012 Jul 5;120(1):207-13. doi: 10.1182/blood-2011-04-347187. Epub 2012 Apr 19.
Increased fibrinolysis is an important component of acute promyelocytic leukemia (APL) bleeding diathesis. APL blasts overexpress annexin II (ANXII), a receptor for tissue plasminogen activator (tPA), and plasminogen, thereby increasing plasmin generation. Previous studies suggested that ANXII plays a pivotal role in APL coagulopathy. ANXII binding to tPA can be inhibited by homocysteine and hyperhomocysteinemia can be induced by L-methionine supplementation. In the present study, we used an APL mouse model to study ANXII function and the effects of hyperhomocysteinemia in vivo. Leukemic cells expressed higher ANXII and tPA plasma levels (11.95 ng/mL in leukemic vs 10.74 ng/mL in wild-type; P = .004). In leukemic mice, administration of L-methionine significantly increased homocysteine levels (49.0 μmol/mL and < 6.0 μmol/mL in the treated and nontreated groups, respectively) and reduced tPA levels to baseline concentrations. The latter were also decreased after infusion of the LCKLSL peptide, a competitor for the ANXII tPA-binding site (11.07 ng/mL; P = .001). We also expressed and purified the p36 component of ANXII in Pichia methanolica. The infusion of p36 in wild-type mice increased tPA and thrombin-antithrombin levels, and the latter was reversed by L-methionine administration. The results of the present study demonstrate the relevance of ANXII in vivo and suggest that methionine-induced hyperhomocysteinemia may reverse hyperfibrinolysis in APL.
3. A competitive hexapeptide inhibitor of annexin A2 prevents hypoxia-induced angiogenic events
Mallika Valapala, Sanjay I Thamake, Jamboor K Vishwanatha J Cell Sci. 2011 May 1;124(Pt 9):1453-64. doi: 10.1242/jcs.079236. Epub 2011 Apr 12.
Extracellular proteolysis is an indispensable requirement for the formation of new blood vessels during neovascularization and is implicated in the generation of several angiogenic regulatory molecules. Anti-proteolytic agents have become attractive therapeutic strategies in diseases associated with excessive neovascularization. Annexin A2 (AnxA2) is an endothelial cell-surface receptor for the generation of active proteolytic factors, such as plasmin. Here, we show that AnxA2 is abundantly expressed in the neovascular tufts in a murine model of neovascularization. Exposure to hypoxic conditions results in elevation of AnxA2 and tissue plasminogen activator (tPA) in human retinal microvascular endothelial cells (RMVECs). We show that the hexapeptide competitive inhibitor LCKLSL, which targets the N-terminal tPA-binding site of AnxA2, binds efficiently to cell-surface AnxA2 compared with binding of the control peptide LGKLSL. Treatment with the competitive peptide inhibits the generation of plasmin and suppresses the VEGF-induced activity of tPA under hypoxic conditions. Application of the competitive peptide in two in vivo models of angiogenesis demonstrated suppression of the angiogenic responses, which was also associated with significant changes in the vascular sprouting. These results suggest that AnxA2-mediated plasmin generation is an important event in angiogenesis and is inhibited by a specific competitive peptide that inhibits the binding of tPA to AnxA2.
Online Inquiry
Verification code
Inquiry Basket