Leptin (116-130) (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Leptin (116-130) (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Leptin (116-130) (human) is a fragment of human leptin, which is an adipose tissue-derived protein encoded by an obesity gene and is involved in controlling food intake, energy expenditure and reproduction, as well as playing a role in immune regulation, inflammation, and hematopoiesis.

Category
Others
Catalog number
BAT-014845
CAS number
2243207-12-5
Molecular Formula
C70H106N18O24S
Molecular Weight
1615.76
IUPAC Name
(4S)-4-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-amino-3-hydroxypropanoyl]amino]-3-sulfanylpropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]propanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-4-methylpentanoyl]amino]-5-[[(2S,3R)-1-[[(2S)-1-[[(2S)-3-carboxy-1-[[(1S)-1-carboxy-2-hydroxyethyl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-5-oxopentanoic acid
Synonyms
Obese Gene Peptide (116-130) (human); L-Serine, L-seryl-L-cysteinyl-L-histidyl-L-leucyl-L-prolyl-L-tryptophyl-L-alanyl-L-serylglycyl-L-leucyl-L-α-glutamyl-L-threonyl-L-leucyl-L-α-aspartyl-; H-Ser-Cys-His-Leu-Pro-Trp-Ala-Ser-Gly-Leu-Glu-Thr-Leu-Asp-Ser-OH; L-seryl-L-cysteinyl-L-histidyl-L-leucyl-L-prolyl-L-tryptophyl-L-alanyl-L-seryl-glycyl-L-leucyl-L-alpha-glutamyl-L-threonyl-L-leucyl-L-alpha-aspartyl-L-serine
Appearance
White Powder
Purity
≥95%
Sequence
SCHLPWASGLETLDS
Storage
Store at -20°C
Solubility
Soluble in Acetic Acid
InChI
InChI=1S/C70H106N18O24S/c1-32(2)18-43(62(103)78-42(15-16-54(94)95)60(101)87-56(36(8)92)68(109)82-44(19-33(3)4)63(104)80-47(23-55(96)97)65(106)85-50(29-91)70(111)112)77-53(93)26-74-59(100)49(28-90)84-57(98)35(7)76-61(102)45(21-37-24-73-41-13-10-9-12-39(37)41)81-67(108)52-14-11-17-88(52)69(110)48(20-34(5)6)83-64(105)46(22-38-25-72-31-75-38)79-66(107)51(30-113)86-58(99)40(71)27-89/h9-10,12-13,24-25,31-36,40,42-52,56,73,89-92,113H,11,14-23,26-30,71H2,1-8H3,(H,72,75)(H,74,100)(H,76,102)(H,77,93)(H,78,103)(H,79,107)(H,80,104)(H,81,108)(H,82,109)(H,83,105)(H,84,98)(H,85,106)(H,86,99)(H,87,101)(H,94,95)(H,96,97)(H,111,112)/t35-,36+,40-,42-,43-,44-,45-,46-,47-,48-,49-,50-,51-,52-,56-/m0/s1
InChI Key
YUWVNLMTEGHKIG-OPDXBULCSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCC(=O)O)C(=O)NC(C(C)O)C(=O)NC(CC(C)C)C(=O)NC(CC(=O)O)C(=O)NC(CO)C(=O)O)NC(=O)CNC(=O)C(CO)NC(=O)C(C)NC(=O)C(CC1=CNC2=CC=CC=C21)NC(=O)C3CCCN3C(=O)C(CC(C)C)NC(=O)C(CC4=CN=CN4)NC(=O)C(CS)NC(=O)C(CO)N
1. A Leptin Fragment Mirrors the Cognitive Enhancing and Neuroprotective Actions of Leptin
Yasaman Malekizadeh, Alison Holiday, Devon Redfearn, James A Ainge, Gayle Doherty, Jenni Harvey Cereb Cortex. 2017 Oct 1;27(10):4769-4782. doi: 10.1093/cercor/bhw272.
A key pathology of Alzheimer's disease (AD) is amyloid β (Aβ) accumulation that triggers synaptic impairments and neuronal death. Metabolic disruption is common in AD and recent evidence implicates impaired leptin function in AD. Thus the leptin system may be a novel therapeutic target in AD. Indeed, leptin has cognitive enhancing properties and it prevents the aberrant effects of Aβ on hippocampal synaptic function and neuronal viability. However, as leptin is a large peptide, development of smaller leptin-mimetics may be the best therapeutic approach. Thus, we have examined the cognitive enhancing and neuroprotective properties of known bioactive leptin fragments. Here we show that the leptin (116-130) fragment, but not leptin (22-56), mirrored the ability of leptin to promote AMPA receptor trafficking to synapses and facilitate activity-dependent hippocampal synaptic plasticity. Administration of leptin (116-130) also mirrored the cognitive enhancing effects of leptin as it enhanced performance in episodic-like memory tests. Moreover, leptin (116-130) prevented hippocampal synaptic disruption and neuronal cell death in models of amyloid toxicity. These findings establish further the importance of the leptin system as a therapeutic target in AD.
2. Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells
Yu-Tang Chin, et al. J Biomed Sci. 2017 Jul 27;24(1):51. doi: 10.1186/s12929-017-0356-6.
Background: Obesity and its comorbidities constitute a serious health burden worldwide. Leptin plays an important role in diet control; however, it has a stimulatory potential on cancer cell proliferation. The OB3 peptide, a synthetic peptide, was shown to be more active than leptin in regulating metabolism but with no mitogenic effects in cancer cells. Methods: In this study, we investigated the proliferative effects, gene expressions and signaling pathways modulated by leptin and OB3 in human ovarian cancer cells. In addition, an animal study was performed. Results: Leptin, but not OB3, induced the proliferation of ovarian cancer cells. Interestingly, OB3 blocked the leptin-induced proliferative effect when it was co-applied with leptin. Both leptin and OB3 activated the phosphatidylinositol-3-kinase (PI3K) signal transduction pathway. In addition, leptin stimulated the phosphorylation of signal transducer and activator of transcription-3 (STAT3) Tyr-705 as well as estrogen receptor (ER)α, and the expression of ERα-responsive genes. Interestingly, all leptin-induced signal activation and gene expressions were blocked by the co-incubation with OB3 and the inhibition of extracellular signal-regulated kinase (ERK)1/2. Coincidently, leptin, but not OB3, increased circulating levels of follicle-stimulating hormone (FSH) which is known to play important roles in the initiation and proliferation of ovarian cancer cells. Conclusions: In summary, our findings suggest that the OB3 peptide may prevent leptin-induced ovarian cancer initiation and progression by disrupting leptin-induced proliferative signals via STAT3 phosphorylation and ERα activation. Therefore, the OB3 peptide is a potential anticancer agent that might be employed to prevent leptin-induced cancers in obese people.
3. In vitro pituitary and testicular effects of the leptin-related synthetic peptide leptin(116-130) amide involve actions both similar to and distinct from those of the native leptin molecule in the adult rat
M Tena-Sempere, L Pinilla, L C González, J Navarro, C Diéguez, F F Casanueva, E Aguilar Eur J Endocrinol. 2000 Apr;142(4):406-10. doi: 10.1530/eje.0.1420406.
The obese gene (ob) product, leptin, has recently emerged as a key element in body weight homeostasis, neuroendocrine function and fertility. Identification of biologically active, readily synthesized fragments of the leptin molecule has drawn considerable attention, as they may provide a powerful tool for detailed characterization of the biological actions of leptin in different experimental settings. Recently, a fragment of mouse leptin protein comprising amino acids 116-130, termed leptin(116-130) amide, was shown to mimic the effects of the native molecule in terms of body weight gain and food intake, and to elicit LH and prolactin (PRL) secretion in vivo. As a continuation of our previous experimental work, the present study reports on the effects of leptin(116-130) amide on basal and stimulated testosterone secretion by adult rat testis in vitro. In addition, a comparison of the effects of human recombinant leptin and leptin(116-130) amide at the pituitary level on the patterns of LH, FSH, PRL and GH secretion is presented. As reported previously by our group, human recombinant leptin(10(-9)-10(-7)M) significantly inhibited both basal and human chorionic gonadotrophin (hCG)-stimulated testosterone secretion in vitro. Similarly, incubation of testicular tissue in the presence of increasing concentrations of leptin(116-130) amide (10(-9)-10(-5)M) resulted in a dose-dependent inhibition of basal and hCG-stimulated testosterone secretion; a reduction that was significant from a dose of 10(-7)M upwards. In addition, leptin(116-130) amide, at all doses tested (10(-9)-10(-5)M), significantly decreased LH and FSH secretion by incubated hemi-pituitaries from adult male rats. In contrast, in the same experimental protocol, recombinant leptin(10(-9)-10(-7)M) was ineffective in modulating LH and FSH release. Finally, neither recombinant leptin nor leptin(116-130) amide were able to change basal PRL and GH secretion in vitro. Our results confirm the ability of leptin, acting at the testicular level, to inhibit testosterone secretion, and map the effect to a domain of the leptin molecule that lies between amino acid residues 116 and 130. In addition, we provide evidence for a direct inhibitory action of leptin(116-130) amide on pituitary LH and FSH secretion, a phenomenon not observed for the native leptin molecule, in the adult male rat.
Online Inquiry
Verification code
Inquiry Basket