Leu-Leu-Leu-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Leu-Leu-Leu-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-006518
CAS number
10329-75-6
Molecular Formula
C18H35N3O4
Molecular Weight
357.49
Leu-Leu-Leu-OH
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoic acid
Synonyms
L-Leucyl-L-leucyl-L-leucine; Leu Leu Leu OH
Appearance
White powder
Purity
≥ 96% (Elemental Analysis)
Density
1.057 g/cm3
Boiling Point
589.6°C at 760 mmHg
Storage
Store at -20 °C
InChI
InChI=1S/C18H35N3O4/c1-10(2)7-13(19)16(22)20-14(8-11(3)4)17(23)21-15(18(24)25)9-12(5)6/h10-15H,7-9,19H2,1-6H3,(H,20,22)(H,21,23)(H,24,25)/t13-,14-,15-/m0/s1
InChI Key
DNDWZFHLZVYOGF-KKUMJFAQSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)O)N
1. Role of integrated cancer nanomedicine in overcoming drug resistance
Arun K Iyer, Amit Singh, Srinivas Ganta, Mansoor M Amiji Adv Drug Deliv Rev. 2013 Nov;65(13-14):1784-802. doi: 10.1016/j.addr.2013.07.012. Epub 2013 Jul 21.
Cancer remains a major killer of mankind. Failure of conventional chemotherapy has resulted in recurrence and development of virulent multi drug resistant (MDR) phenotypes adding to the complexity and diversity of this deadly disease. Apart from displaying classical physiological abnormalities and aberrant blood flow behavior, MDR cancers exhibit several distinctive features such as higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug-efflux transporters. MDR transporters play a pivotal role in protecting the cancer stem cells (CSCs) from chemotherapy. It is speculated that CSCs are instrumental in reviving tumors after the chemo and radiotherapy. In this regard, multifunctional nanoparticles that can integrate various key components such as drugs, genes, imaging agents and targeting ligands using unique delivery platforms would be more efficient in treating MDR cancers. This review presents some of the important principles involved in development of MDR and novel methods of treating cancers using multifunctional-targeted nanoparticles. Illustrative examples of nanoparticles engineered for drug/gene combination delivery and stimuli responsive nanoparticle systems for cancer therapy are also discussed.
2. Can nanomedicines kill cancer stem cells?
Yi Zhao, Daria Y Alakhova, Alexander V Kabanov Adv Drug Deliv Rev. 2013 Nov;65(13-14):1763-83. doi: 10.1016/j.addr.2013.09.016. Epub 2013 Oct 10.
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have the ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs.
3. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance
Alina Shapira, Yoav D Livney, Henk J Broxterman, Yehuda G Assaraf Drug Resist Updat. 2011 Jun;14(3):150-63. doi: 10.1016/j.drup.2011.01.003. Epub 2011 Feb 16.
Anticancer drug resistance almost invariably emerges and poses major obstacles towards curative therapy of various human malignancies. In the current review we will distinguish between mechanisms of chemoresistance that are predominantly mediated by ATP-driven multidrug resistance (MDR) efflux transporters, typically of the ATP-binding cassette (ABC) superfamily, and those that are independent of such drug efflux pumps. In recent years, multiple nanoparticle (NP)-based therapeutic systems have been developed that were rationally designed to overcome drug resistance by neutralizing, evading or exploiting various drug efflux pumps and other resistance mechanisms. NPs are being exploited for selective drug delivery to tumor cells, to cancer stem/tumor initiating cells and/or to the supportive cancer cell microenvironment, i.e. stroma or tumor vasculature. Some of these NPs are currently undergoing preclinical in vivo studies as well as advanced stages of clinical evaluation with promising results. Nanovehicles harboring a payload of therapeutic drug combinations for the selective targeting and elimination of tumor cells as well as the simultaneous overcoming of mechanisms of drug resistance are a subject of intense research efforts, some of which are expected to enter clinical trials in the near future. In the present review we highlight novel approaches to selectively target cancer cells and overcome drug resistance phenomena, through the use of various nanometric drug delivery systems. In the near future, it is anticipated that innovative theragnostic nanovehicles will be developed which will harbor four major components: (1) a selective targeting moiety, (2) a diagnostic imaging aid for the localization of the malignant tumor and its micro- or macrometastases, (3) a cytotoxic, small molecule drug(s) or novel therapeutic biological(s), and (4) a chemosensitizing agent aimed at neutralizing a resistance mechanism, or exploiting a molecular "Achilles hill" of drug resistant cells. We propose to name these envisioned four element-containing nanovehicle platform, "quadrugnostic" nanomedicine. This targeted strategy holds promise in paving the way for the introduction of highly effective nanoscopic vehicles for cancer therapeutics while overcoming drug resistance.
Online Inquiry
Verification code
Inquiry Basket