Liver-expressed antimicrobial peptide 2 precursor
Need Assistance?
  • US & Canada:
    +
  • UK: +

Liver-expressed antimicrobial peptide 2 precursor

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Liver-expressed antimicrobial peptide 2 precursor is an antibacterial peptide isolated from Xenopus laevis.

Category
Functional Peptides
Catalog number
BAT-012623
Synonyms
Met-Thr-Pro-Phe-Trp-Arg-Gly-Leu-Ser-Leu-Arg-Pro-Leu-Gly-Ala-Ser-Cys-Arg-Asp-Ala-Ser-Glu-Cys-Leu-Thr-Lys-Leu-Cys-Ser-Lys-Ser-Arg-Cys-Ser-Leu-Lys-Thr-Phe-Ser-Asn
Sequence
MTPFWRGLSLRPLGASC(1)RDASEC(2)LTKLC(1)SKSRC(2)SLKTFSN
1. Transferrin and transferrin receptors update
Hiroshi Kawabata Free Radic Biol Med. 2019 Mar;133:46-54. doi: 10.1016/j.freeradbiomed.2018.06.037. Epub 2018 Jun 30.
In vertebrates, transferrin (Tf) safely delivers iron through circulation to cells. Tf-bound iron is incorporated through Tf receptor (TfR) 1-mediated endocytosis. TfR1 can mediate cellular uptake of both Tf and H-ferritin, an iron storage protein. New World arenaviruses, which cause hemorrhagic fever, and Plasmodium vivax use TfR1 for entry into host cells. Human TfR2, another receptor for Tf, is predominantly expressed in hepatocytes and erythroid precursors, and holo-Tf dramatically upregulates its expression. TfR2 forms a complex with hemochromatosis protein, HFE, and serves as a component of the iron sensing machinery in hepatocytes. Defects in TfR2 cause systemic iron overload, hemochromatosis, through down-regulation of hepcidin. In erythroid cells, TfR2 forms a complex with the erythropoietin receptor and regulates erythropoiesis. TfR2 facilitates iron transport from lysosomes to mitochondria in erythroblasts and dopaminergic neurons. Administration of apo-Tf, which scavenges free iron, has been explored for various clinical conditions including atransferrinemia, iron overload, and tissue ischemia. Apo-Tf has also been shown to ameliorate anemia in animal models of β-thalassemia. In this review, I provide an update and summary on our knowledge of mammalian Tf and its receptors.
2. Characterization and expression of non-polymorphic liver expressed antimicrobial peptide 2: LEAP-2 in the Japanese quail, Coturnix japonica
Taichiro Ishige, Hiromi Hara, Takashi Hirano, Tomohiro Kono, Kei Hanzawa Anim Sci J. 2016 Sep;87(9):1182-7. doi: 10.1111/asj.12643. Epub 2016 Jun 16.
Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in innate immunity for host defense. The aim of this study was to characterize the LEAP-2 gene in the Japanese quail (Coturnix japonica). Japanese quail LEAP-2 (CjLEAP-2) was identified from the Japanese quail draft genome database by a local BLAST analysis using chicken LEAP-2 (GgLEAP-2). The exon-intron structure of CjLEAP-2, analyzed from three quails, is composed of three exons, as is the chicken LEAP-2 homolog (GgLEAP-2). An analysis of the coding sequence revealed that CjLEAP-2 is 231 bp long, like GgLEAP-2, and 93% identical to GgLEAP-2 at the nucleic acid level. The predicted amino acid sequence of CjLEAP-2 contained the liver-expressed antimicrobial peptide 2-precursor domain and four cysteine residues characteristic of the LEAP-2 protein. The amino acid sequence of the mature peptide of CjLEAP-2 was 100% identical to that of GgLEAP-2. We confirmed that CjLEAP-2 was transcribed in at least seven tissues, including the digestive system. Additionally, the mature peptide region of CjLEAP-2 exhibited no polymorphisms in 99 quails from six strains. Taken together, these findings indicate that CjLEAP-2 is non-polymorphic and therefore, it likely plays an important role in the innate immunity of quail as it does in chicken.
3. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis
Attilio Cavezzi, Roberto Menicagli, Emidio Troiani, Salvatore Corrao F1000Res. 2022 Jan 27;11:102. doi: 10.12688/f1000research.108667.2. eCollection 2022.
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Online Inquiry
Verification code
Inquiry Basket