1. Sensitivity of Actinobacillus actinomycetemcomitans and Capnocytophaga spp. to the bactericidal action of LL-37: a cathelicidin found in human leukocytes and epithelium
D Tanaka, K T Miyasaki, R I Lehrer Oral Microbiol Immunol. 2000 Aug;15(4):226-31. doi: 10.1034/j.1399-302x.2000.150403.x.
The bactericidal activity of synthetic LL-37, a cathelicidin, was assessed against Actinobacillus actinomycetemcomitans (three strains) and Capnocytophaga spp. (three strains). All strains were sensitive to LL-37, and exhibited 99% effective dose of 7.5-to-11.6 micrograms/ml. An amidated form of LL-37, pentamide-37, killed with about the same efficacy as LL-37. Partial inhibition of killing was noted at physiologic concentrations of NaCl, and complete inhibition was observed at 400 mM NaCl. At approximately the 99% effective dose--i.e., 10 micrograms/ml--LL-37 also lost activity against A. actinomycetemcomitans in the presence of native or heat-inactivated 10-15% normal human AB serum. Pentamide-37 was less sensitive to serum inhibition than LL-37. In conclusion, certain oral, gram-negative bacteria are sensitive to the bactericidal activity of LL-37 at low concentrations of serum and salt, a condition likely to be found within the membrane-delimited phagolysosome. Modified forms of LL-37, such as pentamide-37, may be more suitable for future therapeutic application in the presence of serum.
2. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey
C Zhao, T Nguyen, L M Boo, T Hong, C Espiritu, D Orlov, W Wang, A Waring, R I Lehrer Antimicrob Agents Chemother. 2001 Oct;45(10):2695-702. doi: 10.1128/AAC.45.10.2695-2702.2001.
Rhesus monkey bone marrow expresses a cathelicidin whose C-terminal domain comprises a 37-residue alpha-helical peptide (RL-37) that resembles human LL-37. Like its human counterpart, RL-37 rapidly permeabilized the membranes of Escherichia coli ML-35p and lysed liposomes that simulated bacterial membranes. When tested in media whose NaCl concentrations approximated those of extracellular fluids, RL-37 was considerably more active than LL-37 against staphylococci. Whereas human LL-37 contains five acidic residues and has a net charge of +6, rhesus RL-37 has only two acidic residues and a net charge of +8. Speculating that the multiple acidic residues of human LL-37 reduced its efficacy against staphylococci, we made a peptide (LL-37 pentamide) in which each aspartic acid of LL-37 was replaced by an asparagine and each glutamic acid was replaced by a glutamine. LL-37 pentamide's antistaphylococcal activity was substantially greater than that of LL-37. Thus, although the precursor of LL-37 is induced in human skin keratinocytes by injury or inflammation, its insufficiently cationic antimicrobial domain may contribute to the success of staphylococci in colonizing and infecting human skin.