1. Immunosensitization of melanoma tumor cells to non-MHC Fas-mediated killing by MART-1-specific CTL cultures
P J Frost, L H Butterfield, V B Dissette, J S Economou, B Bonavida J Immunol. 2001 Mar 1;166(5):3564-73. doi: 10.4049/jimmunol.166.5.3564.
The discovery of human melanoma rejection Ags has allowed the rational design of immunotherapeutic strategies. One such Ag, MART-1, is expressed on >90% of human melanomas, and CTL generated against MART-1(27-35) kill most HLA A2.1(+) melanoma cells. However, variant tumor cells, which do not express MART-1, down-regulate MHC, or become resistant to apoptosis, will escape killing. Cytotoxic lymphocytes kill by two main mechanisms, the perforin/granzyme degranulation pathway and the TNF/Fas/TNF-related apoptosis-inducing ligand superfamily of apoptosis-inducing ligands. In this study, we examined whether cis-diaminedichloroplatinum (II) cisplatin (CDDP) sensitizes MART-1/HLA A2.1(+) melanoma and melanoma variant tumor cells to non-MHC-restricted, Fas ligand (FasL)-mediated killing by CTL. MART-1(27-35)-specific bulk CTL cultures were generated by pulsing normal PBL with MART-1(27-35) peptide. These CTL cultures specifically kill M202 melanoma cells (MART-1(+), HLA A2.1(+), FasR(-)), and MART-1(27-35) peptide-pulsed T2 cells (FasR(+)), but not M207 melanoma cells (MART-1(+), HLA A2.1(-), FasR(-)), FLU(58-66) peptide-pulsed T2 cells, or DU145 and PC-3 prostate cells (MART-1(-), HLA A2.1(-), FasR(+)). CDDP (0.1-10 microg/ml) sensitized non-MART-1(27-35) peptide-pulsed T2 to the CD8(+) subset of bulk MART-1-specific CTL, and killing was abolished by neutralizing anti-Fas Ab. Furthermore, CDDP up-regulated FasR expression and FasL-mediated killing of M202, and sensitized PC-3 and DU145 to killing by bulk MART-1-specific CTL cultures. These findings demonstrate that drug-mediated sensitization can potentiate FasL-mediated killing by MHC-restricted CTL cell lines, independent of MHC and MART-1 expression on tumor cells. This represents a novel approach for potentially controlling tumor cell variants found in primary heterogeneous melanoma tumor cell populations that would normally escape killing by MART-1-specific immunotherapy.
2. Validation of a HLA-A2 tetramer flow cytometric method, IFNgamma real time RT-PCR, and IFNgamma ELISPOT for detection of immunologic response to gp100 and MelanA/MART-1 in melanoma patients
Yuanxin Xu, Valerie Theobald, Crystal Sung, Kathleen DePalma, Laura Atwater, Keirsten Seiger, Michael A Perricone, Susan M Richards J Transl Med. 2008 Oct 22;6:61. doi: 10.1186/1479-5876-6-61.
Background: HLA-A2 tetramer flow cytometry, IFNgamma real time RT-PCR and IFNgamma ELISPOT assays are commonly used as surrogate immunological endpoints for cancer immunotherapy. While these are often used as research assays to assess patient's immunologic response, assay validation is necessary to ensure reliable and reproducible results and enable more accurate data interpretation. Here we describe a rigorous validation approach for each of these assays prior to their use for clinical sample analysis. Methods: Standard operating procedures for each assay were established. HLA-A2 (A*0201) tetramer assay specific for gp100209(210M) and MART-126-35(27L), IFNgamma real time RT-PCR and ELISPOT methods were validated using tumor infiltrating lymphocyte cell lines (TIL) isolated from HLA-A2 melanoma patients. TIL cells, specific for gp100 (TIL 1520) or MART-1 (TIL 1143 and TIL1235), were used alone or spiked into cryopreserved HLA-A2 PBMC from healthy subjects. TIL/PBMC were stimulated with peptides (gp100209, gp100pool, MART-127-35, or influenza-M1 and negative control peptide HIV) to further assess assay performance characteristics for real time RT-PCR and ELISPOT methods. Validation parameters included specificity, accuracy, precision, linearity of dilution, limit of detection (LOD) and limit of quantification (LOQ). In addition, distribution was established in normal HLA-A2 PBMC samples. Reference ranges for assay controls were established. Results: The validation process demonstrated that the HLA-A2 tetramer, IFNgamma real time RT-PCR, and IFNgamma ELISPOT were highly specific for each antigen, with minimal cross-reactivity between gp100 and MelanA/MART-1. The assays were sensitive; detection could be achieved at as few as 1/4545-1/6667 cells by tetramer analysis, 1/50,000 cells by real time RT-PCR, and 1/10,000-1/20,000 by ELISPOT. The assays met criteria for precision with %CV < 20% (except ELISPOT using high PBMC numbers with %CV < 25%) although flow cytometric assays and cell based functional assays are known to have high assay variability. Most importantly, assays were demonstrated to be effective for their intended use. A positive IFNgamma response (by RT-PCR and ELISPOT) to gp100 was demonstrated in PBMC from 3 melanoma patients. Another patient showed a positive MART-1 response measured by all 3 validated methods. Conclusion: Our results demonstrated the tetramer flow cytometry assay, IFNgamma real-time RT-PCR, and INFgamma ELISPOT met validation criteria. Validation approaches provide a guide for others in the field to validate these and other similar assays for assessment of patient T cell response. These methods can be applied not only to cancer vaccines but to other therapeutic proteins as part of immunogenicity and safety analyses.
3. Cytolytic T cell reactivity against melanoma-associated differentiation antigens in peripheral blood of melanoma patients and healthy individuals
E Jäger, M Ringhoffer, M Arand, J Karbach, D Jäger, C Ilsemann, M Hagedorn, F Oesch, A Knuth Melanoma Res. 1996 Dec;6(6):419-25. doi: 10.1097/00008390-199612000-00003.
Antigenic peptides derived from several differentiation antigens of the melanocyte lineage were recently identified in human melanomas as targets for HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs). To examine their potential role in tumour-directed immune responses in vivo, we determined CTL reactivity against seven antigenic peptides derived from the Melan A/MART-1, tyrosinase and gp100/Pmel17 antigens in the peripheral blood of 10 HLA-A2+ healthy controls and 26 HLA-A2+ melanoma patients. The influenza matrix peptide (GILGFVFTL) presented by HLA-A2.1 was used as a control peptide. CTL reactivity was assessed in a mixed lymphocyte 'peptide' culture assay. Reactivity against Melan A/MART-1-derived peptide antigens was readily detectable in both melanoma patients and controls. Reactivity directed against tyrosinase-derived peptide antigens was also detected in both melanoma patients and healthy individuals, but less frequently. A measurable response against gp100/Pmel17-derived antigens was found in 1/10 controls and in 1/26 of the melanoma patients. Reactivity against the influenza matrix peptide was common in both melanoma patients and controls. Our findings show that precursor CTLs against melanocyte differentiation antigens can be detected in peripheral blood of melanoma patients and healthy individuals. The pattern of CTL reactivity directed against melanoma-associated antigens does not seem to be altered in melanoma patients. Despite antigen-specific CTL reactivity, tumour growth was not prevented in melanoma patients and autoimmune phenomena were not detected in healthy individuals. It remains to be determined whether precursor CTLs recognizing melanocyte differentiation antigens can be activated by immunization and lead to effective tumour rejection in vivo.