Motilin, canine
Need Assistance?
  • US & Canada:
    +
  • UK: +

Motilin, canine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Motilin, canine is a 22-amino acid peptide. Motilin is an effective agonist for gastrointestinal smooth muscle contraction.

Category
Peptide Inhibitors
Catalog number
BAT-010536
CAS number
85490-53-5
Molecular Formula
C120H194N36O34
Molecular Weight
2685.05
Motilin, canine
IUPAC Name
(2S)-5-amino-2-[[2-[[(2S)-6-amino-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-amino-3-phenylpropanoyl]amino]-3-methylbutanoyl]pyrrolidine-2-carbonyl]amino]-3-methylpentanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-4-carboxybutanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]hexanoyl]amino]-3-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-carboxybutanoyl]amino]hexanoyl]amino]-4-carboxybutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-oxobutanoyl]amino]hexanoyl]amino]acetyl]amino]-5-oxopentanoic acid
Synonyms
Motilin (canine); H-Phe-Val-Pro-Ile-Phe-Thr-His-Ser-Glu-Leu-Gln-Lys-Ile-Arg-Glu-Lys-Glu-Arg-Asn-Lys-Gly-Gln-OH; L-phenylalanyl-L-valyl-L-prolyl-L-isoleucyl-L-phenylalanyl-L-threonyl-L-histidyl-L-seryl-L-alpha-glutamyl-L-leucyl-L-glutaminyl-L-lysyl-L-isoleucyl-L-arginyl-L-alpha-glutamyl-L-lysyl-L-alpha-glutamyl-L-arginyl-L-asparagyl-L-lysyl-glycyl-L-glutamine
Appearance
White or Off-white Lyophilized Powder
Purity
≥95% by HPLC
Density
1.47±0.1 g/cm3 (Predicted)
Sequence
FVPIFTHSELQKIREKERNKGQ
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C120H194N36O34/c1-10-64(7)95(114(185)146-75(35-25-51-134-120(130)131)101(172)143-77(39-44-91(163)164)104(175)139-72(32-19-22-48-122)100(171)142-78(40-45-92(165)166)105(176)141-74(34-24-50-133-119(128)129)102(173)148-84(57-89(127)161)110(181)138-71(31-18-21-47-121)99(170)135-59-90(162)137-80(118(189)190)38-43-88(126)160)153-107(178)73(33-20-23-49-123)140-103(174)76(37-42-87(125)159)144-108(179)81(53-62(3)4)147-106(177)79(41-46-93(167)168)145-112(183)85(60-157)151-109(180)83(56-69-58-132-61-136-69)150-116(187)97(66(9)158)155-111(182)82(55-68-29-16-13-17-30-68)149-115(186)96(65(8)11-2)154-113(184)86-36-26-52-156(86)117(188)94(63(5)6)152-98(169)70(124)54-67-27-14-12-15-28-67/h12-17,27-30,58,61-66,70-86,94-97,157-158H,10-11,18-26,31-57,59-60,121-124H2,1-9H3,(H2,125,159)(H2,126,160)(H2,127,161)(H,132,136)(H,135,170)(H,137,162)(H,138,181)(H,139,175)(H,140,174)(H,141,176)(H,142,171)(H,143,172)(H,144,179)(H,145,183)(H,146,185)(H,147,177)(H,148,173)(H,149,186)(H,150,187)(H,151,180)(H,152,169)(H,153,178)(H,154,184)(H,155,182)(H,163,164)(H,165,166)(H,167,168)(H,189,190)(H4,128,129,133)(H4,130,131,134)/t64-,65-,66+,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,94-,95-,96-,97-/m0/s1
InChI Key
UXNMKJPZQNQTMI-CSRYRKIZSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC1=CC=CC=C1)C(=O)NC(C(C)O)C(=O)NC(CC2=CNC=N2)C(=O)NC(CO)C(=O)NC(CCC(=O)O)C(=O)NC(CC(C)C)C(=O)NC(CCC(=O)N)C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)O)C(=O)NC(CCCCN)C(=O)NC(CCC(=O)O)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(=O)N)C(=O)NC(CCCCN)C(=O)NCC(=O)NC(CCC(=O)N)C(=O)O)NC(=O)C3CCCN3C(=O)C(C(C)C)NC(=O)C(CC4=CC=CC=C4)N
1. Motilin: from gastric motility stimulation to hunger signalling
Jan Tack, Inge Depoortere, Eveline Deloose, Wout Verbeure Nat Rev Endocrinol . 2019 Apr;15(4):238-250. doi: 10.1038/s41574-019-0155-0.
After the discovery of motilin in 1972, motilin and the motilin receptor were studied intensely for their role in the control of gastrointestinal motility and as targets for treating hypomotility disorders. The genetic revolution - with the use of knockout models - sparked novel insights into the role of multiple peptides but contributed to a decline in interest in motilin, as this peptide and its receptor exist only as pseudogenes in rodents. The past 5 years have seen a major surge in interest in motilin, as a series of studies have shown its relevance in the control of hunger and regulation of food intake in humans in both health and disease. Luminal stimuli, such as bitter tastants, have been identified as modulators of motilin release, with effects on hunger and food intake. The current state of knowledge and potential implications for therapy are summarized in this Review.
2. The mechanism of motilin excitation of the canine small intestine
J E Fox, J Jury, H Robotham, E E Daniel Life Sci . 1984 Mar 5;34(10):1001-6. doi: 10.1016/0024-3205(84)90305-9.
Close intraarterial injections of motilin to the small intestine of the anaesthetized dog produce prolonged phasic contractions. Tetrodotoxin infused intraarterially blocked field stimulated contractions and abolished the response to motilin as did treatment with a combination of hexamethonium and atropine. Atropine alone increased the dose of motilin required to induce responses. Hexamethonium alone similarly increased the dose of motilin required in the jejunum, but not for the ileum. These results suggest that motilin acts to contract small intestine by stimulation of intrinsic excitatory nerves, some of which are post-ganglionic cholinergic and some of which are not, but are activated by a pathway with a nicotinic synapse. The ED50 for ileal contractions was greater than that for the jejunum and the time to reach maximum contractions longer suggesting a decreased responsiveness of the lower small intestine to motilin as compared to the upper gastrointestinal tract. These results and the lesser quantity of immunoreactive motilin in the ileum than in the jejunum may explain the lack of relationship of the activity front of the migrating motor complex in the lower small intestine to venous motilin concentrations.
3. Motilin-induced electrical activity in the canine gastrointestinal tract
W Domschke, H D Ritchie, W E Green, L Demling, E Wünsch, H Ruppin, D L Wingate, H H Thompson Scand J Gastroenterol Suppl . 1976;39:111-8.
Myoelectric activity induced by a synthetic analogue of the duodenal polypeptide motilin, was studied in isolated vascular-perfused canine duodenum and stomach, and in conscious dogs with serosal electrodes implanted in the stomach and the small intestine. In the isolated preparation, the duodenum was found to be four times as sensitive as the antrum to the polypeptide, showing a dose-dependent increase in spike activity within two minutes after administration of the polypeptide. By contrast, in the conscious fasted animal, the only response to motilin, above a threshold dose, was the interpolation of a premature migrating myoelectric complex in the spontaneous interdigestive sequence, appearing fifteen to twenty minutes after the start of infusion. Since the essential difference between the ex vivo and the intact intestine was the preservation of efferent and afferent nervous connections in the latter, it seems that in the conscious animal, the response to exogenous motilin is modulated by the innervation of the intestine, or, alternatively, motilin interacts with the centre controlling the pattern of motor activity in the small intestine rather than directly with smooth muscle. The latter hypothesis is supported by the observation that motilin had no effect on the motor activity of the small intestine during the infusion of pentagastrin which abolishes spontaneous migrating myoelectric complexes.
Online Inquiry
Verification code
Inquiry Basket