MPGΔNLS, HIV related
Need Assistance?
  • US & Canada:
    +
  • UK: +

MPGΔNLS, HIV related

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

It is a 27-residue peptide derived from the hydrophobic fusion peptide of HIV-1 gp41 (for efficient crossing of the cell membrane) and the hydrophilic nuclear localization sequence of SV40 large T antigen (for the nuclear addressing of the peptide). It contains a single mutation in which the second lysine in NLS has mutated to serine.

Category
Functional Peptides
Catalog number
BAT-013344
Molecular Formula
C126H201N35O33S
Molecular Weight
2766.27
Synonyms
H-Gly-Ala-Leu-Phe-Leu-Gly-Phe-Leu-Gly-Ala-Ala-Gly-Ser-Thr-Met-Gly-Ala-Trp-Ser-Gln-Pro-Lys-Ser-Lys-Arg-Lys-Val-OH
Purity
97%
Sequence
GALFLGFLGAAGSTMGAWSQPKSKRKV
Storage
Store at -20°C
Solubility
Freely soluble in water. Avoid repeated freezing and thawing.
1. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery
Laurence Crombez, May C Morris, Frederic Heitz, Gilles Divita Methods Mol Biol. 2011;764:59-73. doi: 10.1007/978-1-61779-188-8_4.
The dramatic acceleration in identification of new nucleic acid-based therapeutic molecules such as short interfering RNA (siRNA) and peptide-nucleic acid (PNA) analogues has provided new perspectives for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of nucleic acids together with the low permeability of the cell membrane to negatively charged molecules remain major obstacles to their clinical development. Several non-viral strategies have been proposed to improve the delivery of synthetic short oligonucleotides both in cultured cells and in vivo. Cell-penetrating peptides constitute very promising tools for non-invasive cellular import of oligonucleotides and analogs. We recently described a non-covalent strategy based on short amphiphatic peptides (MPG8/PEP3) that have been successfully applied ex vivo and in vivo for the delivery of therapeutic siRNA and PNA molecules. PEP3 and MPG8 form stable nanoparticles with PNA analogues and siRNA, respectively, and promote their efficient cellular uptake, independently of the endosomal pathway, into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. This chapter describes easy-to-handle protocols for the use of MPG-8 or PEP-3-nanoparticle technologies for PNA and siRNA delivery into adherent and suspension cell lines as well as in vivo into cancer mouse models.
2. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells
M C Morris, P Vidal, L Chaloin, F Heitz, G Divita Nucleic Acids Res. 1997 Jul 15;25(14):2730-6. doi: 10.1093/nar/25.14.2730.
The development of antisense and gene therapy has focused mainly on improving methods for oligonucleotide and gene delivery into cells. In the present work, we describe a potent new strategy for oligonucleotide delivery based on the use of a short peptide vector, termed MPG (27 residues), which contains a hydrophobic domain derived from the fusion sequence of HIV gp41 and a hydrophilic domain derived from the nuclear localization sequence of SV40 T-antigen. The formation of peptide vector/oligonucleotide complexes was investigated by measuring changes in intrinsic tryptophan fluorescence of peptide and of mansyl-labelled oligonucleotides. MPG exhibits relatively high affinity for both single- and double-stranded DNA in a nanomolar range. Based on both intrinsic and extrinsic fluorescence titrations, it appears that the main binding between MPG and oligonucleotides occurs through electrostatic interactions, which involve the basic-residues of the peptide vector. Further peptide/peptide interactions also occur, leading to a higher MPG/oligonucleotide ratio (in the region of 20/1), which suggests that oligonucleotides are most likely coated with several molecules of MPG. Premixed complexes of peptide vector with single or double stranded oligonucleotides are delivered into cultured mammalian cells in less than 1 h with relatively high efficiency (90%). This new strategy of oligonucleotide delivery into cultured cells based on a peptide vector offers several advantages compared to other commonly used approaches of delivery including efficiency, stability and absence of cytotoxicity. The interaction with MPG strongly increases both the stability of the oligonucleotide to nuclease and crossing of the plasma membrane. The mechanism of cell delivery of oligonucleotides by MPG does not follow the endosomal pathway, which explains the rapid and efficient delivery of oligonucleotides in the nucleus. As such, we propose this peptide vector as a powerful tool for potential development in gene and antisense therapy.
3. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration
Jian Zhou, Weiqiang Ju, Dongping Wang, Linwei Wu, Xiaofeng Zhu, Zhiyong Guo, Xiaoshun He PLoS One. 2012;7(4):e33577. doi: 10.1371/journal.pone.0033577. Epub 2012 Apr 4.
Background: Inadequate liver regeneration (LR) is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR. Methodology/principal findings: Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH), were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR), document hepatocyte proliferation (Ki-67 staining), and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67(+) cells %) showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (T-Bil), was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results. Conclusions/significance: MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR.
Online Inquiry
Verification code
Inquiry Basket