Need Assistance?
  • US & Canada:
    +
  • UK: +

Mucroporin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Mucroporin is a cationic host defense peptide that has antibacterial activity by breaking membranes. Mucroporin is more effective on Gram-positive than on Gram-negative bacteria.

Category
Functional Peptides
Catalog number
BAT-011923
Synonyms
Antimicrobial peptide 36.21; Non-disulfide-bridged peptide 4.5
Sequence
GRRKRQMEARFEPQNRNYRKRELDLEKLFANMPDY
1. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus
Chao Dai, Yibao Ma, Zhenhuan Zhao, Ruiming Zhao, Qian Wang, Yingliang Wu, Zhijian Cao, Wenxin Li Antimicrob Agents Chemother. 2008 Nov;52(11):3967-72. doi: 10.1128/AAC.00542-08. Epub 2008 Sep 8.
The misuse of antibiotics has led our age to a dangerous edge, as antibiotic-resistant pathogens appear to evolve more quickly than antibiotics are invented. Thus, new agents to treat bacterial infection are badly needed. Cationic host defense peptides are on the first line of a host defense system and are thought to be good candidates for treating bacterial infection. Here, a novel cationic host defense peptide, mucroporin, was cloned and characterized from the venom of Lychas mucronatus. The MIC for Staphylococcus aureus was 25 microg/ml, including antibiotic-resistant pathogens. Based on the molecular template of mucroporin, mucroporin-M1 was designed by amino acid substitution. The MIC for S. aureus was 5 microg/ml, including the antibiotic-resistant pathogens methicillin-resistant S. aureus, methicillin-resistant coagulase-negative Staphylococcus, penicillin-resistant S. aureus, and penicillin-resistant S. epidermidis. Moreover, mucroporin-M1 also inhibited gram-negative bacteria. The modes of action of mucroporin and mucroporin-M1 were both rapid killing by disrupting the cell membrane of bacteria, and the number of surviving bacteria was reduced by about 4 to 5 orders of magnitude immediately after peptide delivery. These results showed that mucroporin could be considered a potential anti-infective drug, especially for treating antibiotic-resistant pathogens.
2. Absolute binding free energies of mucroporin and its analog mucroporin-M1 with the heptad repeat 1 domain and RNA-dependent RNA polymerase of SARS-CoV-2
Felipe Rodrigues Souza, Paloma Guimarães Moura, Rayla Kelly Magalhães Costa, Rudielson Santos Silva, André Silva Pimentel J Biomol Struct Dyn. 2022 Aug 22;1-12. doi: 10.1080/07391102.2022.2114014. Online ahead of print.
The peptide Mucroporin and its analog Mucroporin-M1 were studied using the molecular docking and molecular dynamics simulation of their complexation with two protein targets, the Heptad Repeat 1 (HR1) domain and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The molecular docking of the peptide-protein complexes was performed using the glowworm swarm optimization algorithm. The lowest energy poses were submitted to molecular dynamics simulation. Then, the binding free energies of Mucroporin and its analog Mucroporin-M1 with these two protein targets were calculated using the Multistate Bennett Acceptance Ratio (MBAR) method. It was verified that the peptides/HR1 domain complex showed stability in the interaction site determined by molecular docking. It was also found that Mucroporin-M1 has a much higher affinity than Mucroporin to the HR1 protein target. The peptides showed similar stability and affinity at the NTP binding site in the RdRp protein. Additional experimental studies are needed to confirm the antiviral activity of Mucroporin-M1 and a possible mechanism of action against SARS-CoV-2. However, here we indicate that Mucroporin-M1 may have potential antiviral activity against the HR1 domain with the possibility for further peptide optimization.Communicated by Ramaswamy H. Sarma.
3. Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo
Zhenhuan Zhao, Wei Hong, Zhengyang Zeng, Yingliang Wu, Kanghong Hu, Xiaohui Tian, Wenxin Li, Zhijian Cao J Biol Chem. 2012 Aug 31;287(36):30181-90. doi: 10.1074/jbc.M112.370312. Epub 2012 Jul 12.
Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources.
Online Inquiry
Verification code
Inquiry Basket