Myeloid antimicrobial peptide BMAP-27
Need Assistance?
  • US & Canada:
    +
  • UK: +

Myeloid antimicrobial peptide BMAP-27

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

BMAP-27 is a 26 amino-acid peptide with amidated C-terminus. It has shown potent antimicrobial effects against various species of bacteria and parasites. BMAP-27 was the most effective at killing Staphylococcus aureus, Streptococcus uberis, and Escherichia coli, and this was dependent on its amphipathic structure and cationic charge. However, it seems to have hemolytic effects on cultured blood cells, as well as cytotoxic effects to hematopoietic cells and activated human lymphocytes.

Category
Functional Peptides
Catalog number
BAT-011899
Sequence
GRFKRFRKKFKKLFKKLS
1. Cathelicidin bovine myeloid antimicrobial peptide (BMAP) 28 is involved in the inflammatory response against alpha-herpesviruses in the bovine nervous system
M M Burucúa, S E Pérez, A C Odeón, E R Cobo, S Quintana, M S Marin Mol Immunol. 2020 Apr 30;122:148-155. doi: 10.1016/j.molimm.2020.04.017. Online ahead of print.
The role of the local innate immune response in the neuropathogenesis of bovine herpesvirus (BoHV) type 1 and 5 remains largely unknown. This study determined the gene transcriptional expression of relevant bovine cathelicidins, TNFα and IFNβ in the nervous system of experimentally-infected cattle during the different stages of BoHV-1 and BoHV-5 infectious cycle. We studied the modulation of bovine myeloid antimicrobial peptide (BMAP) 27 and 28 by alpha-herpesviruses during acute infection of the central nervous system (CNS). However, BMAP28 was the main cathelicidin modulated. BoHV-5 supressed BMAP28 expression mainly in frontal cortex and cervical medulla whereas BoHV-1 slightly induced the expression of cathelicidins in the olfactory and posterior cortex. The differences in the regulation of the innate response are likely related to distinct replication rates of both alpha-herpesviruses in the CNS. During latency and reactivation, BoHV-1 and -5 decreased BMAP28 and BMAP27 expression, accompanied by high levels of TNFα and IFNβ transcripts in the posterior brain region and medulla during BoHV reactivation. In terms of cytokines, a remarkably overexpression of IFNβ was induced by BoHV-5 (133.8-fold). In trigeminal ganglion (TG) both alpha-herpesviruses induced cathelidicins gene expression at all stages of the infection cycle, while only acute BoHV-5 infection increased TNFα (129-fold) mRNA levels. This study suggests that the pronounced downregulation of BMAP28 in BoHV-5-acutely-infected CNS is due to a decreased immune stimulation during viral infection, favouring its establishment in the CNS with a low replication rate until latency. Thus, cathelicidins, together with IFNβ and TNFα, are differentially regulated by BoHV-5 and BoHV-1 infections and this regulation is dependent on the stage of virus infection in the bovine nervous system.
2. Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs
Eun Kyu Lee, Yoon-Chang Kim, Yong Hai Nan, Song Yub Shin Peptides. 2011 Jun;32(6):1123-30. doi: 10.1016/j.peptides.2011.03.024. Epub 2011 Apr 8.
To develop novel antimicrobial peptides (AMPs) with improved cell selectivity and potent LPS-neutralizing activity, we synthesized an 18 N-terminal residues peptide (BAMP-18) of bovine myeloid antimicrobial peptide-27 (BMAP-27) and its analogs (BMAP-18-W, BMAP-18-L, BMAP-18-I and BMAP-18-f). BMAP-18 and its analogs displayed much higher cell selectivity (about 4-97-fold increased) as compared to parental BMAP-27 because of their decreased hemolytic activity and retained antimicrobial activity. BMAP-27 caused near-complete dye leakage from bacterial-membrane-mimicking vesicles even at very low concentration of 0.5μM, whereas BMAP-18 and its analogs induced very little dye leakage (less than 40%) even at 16μM. These peptides induced near-complete membrane depolarization of Staphylococcus aureus cells under their MIC (4μM). These results suggests that BMAP-18 and its analogs exhibit lethality toward microbes due to their ability to form small channels that permit the transit of ions or protons, but not molecules as large as calcein, and not by the membrane-disruption/perturbation mode. BMAP-18 and its analogs significantly inhibited nitric oxide (NO) production or tumor necrosis factor-α (TNF-α) release in LPS-stimulated mouse macrophage RAW264.7 cells at 10μM. In particular, BMAP-18-W showed LPS-neutralizing activity comparable to that of BMAP-27. There was a significant linear correlation between the increase in the hydrophobicity of peptides and LPS-neutralizing activity. Although BMAP-18-W has lower hydrophobicity than BMAP-18-L, it showed higher LPS-neutralizing activity as compared to BMAP-18-L. This result suggests other important parameters of AMPs may be involved in their LPS-neutralizing activity, as well as positive charge and hydrophobicity.
3. Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18
Lee R Haines, Jamie M Thomas, Angela M Jackson, Brett A Eyford, Morteza Razavi, Cristalle N Watson, Brent Gowen, Robert E W Hancock, Terry W Pearson PLoS Negl Trop Dis. 2009;3(2):e373. doi: 10.1371/journal.pntd.0000373. Epub 2009 Feb 3.
Background: Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides) to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27), a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. Methodology/principal findings: BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS-induced secretion of tumour necrosis factor alpha (TNF-alpha), a cytokine that is associated with inflammation and cachexia (wasting) in sleeping sickness patients. As a prelude to in vivo applications, high affinity antibodies to BMAP-18 were produced in rabbits and used in immuno-mass spectrometry assays to detect the intact peptide in human blood and plasma. Conclusions/significance: BMAP-18, a truncated form of the potent antimicrobial BMAP-27, showed low toxicity to mammalian cells, insect cells and the tsetse bacterial symbiont Sodalis glossinidius while retaining an ability to kill a variety of species and life cycle stages of pathogenic kinetoplastid parasites in vitro. BMAP-18 also inhibited secretion of TNF-alpha, an inflammatory cytokine that plays a role in the cachexia associated with African sleeping sickness. These findings support the idea that BMAP-18 should be explored as a candidate for therapy of economically important trypanosome-infected hosts, such as cattle, fish and humans, and for paratransgenic expression in Sodalis glossinidius, a bacterial symbiont in the tsetse vector, as a strategy for interference with trypanosome transmission.
Online Inquiry
Verification code
Inquiry Basket