Myeloid antimicrobial peptide BMAP-28
Need Assistance?
  • US & Canada:
    +
  • UK: +

Myeloid antimicrobial peptide BMAP-28

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

A bovine myeloid antimicrobial peptide (BMAP-28) belongs to the cathelicidin family and exerts potent antimicrobial activity in order to protect animals from bacterial and fungal infections. Moreover, it has been indicated that the antimicrobial effect of BMAP-28 can be enhanced by altering its cationic and hydrophobic amino acid residues.

Category
Functional Peptides
Catalog number
BAT-011900
Sequence
GGLRSLGRKILRAWKKYG
1. Structural insight into the mechanism of action of antimicrobial peptide BMAP-28(1-18) and its analogue mutBMAP18
Nutan Agadi, Sheeja Vasudevan, Ashutosh Kumar J Struct Biol. 2018 Dec;204(3):435-448. doi: 10.1016/j.jsb.2018.10.003. Epub 2018 Oct 15.
Structural characterization of BMAP-28(1-18), a potent bovine myeloid antimicrobial peptide can aid in understanding its mechanism of action at molecular level. We report NMR structure of the BMAP-28(1-18) and its mutated analogue mutBMAP18 in SDS micelles. Structural comparison of the peptides bound to SDS micelles and POPE-POPG vesicles using circular dichroism, suggest that structures in the two lipid preparations are similar. Antimicrobial assays show that even though both these peptides adopt helical conformation, BMAP-28(1-18) is more potent than mutBMAP18 in killing bacterial cells. Our EM images clearly indicate that the peptides target the bacterial cell membrane resulting in leakage of its contents. The structural basis for difference in activity between these peptides was investigated by molecular dynamics simulations. Inability of the mutBMAP18 to retain its helical structure in presence of POPE:POPG membrane as opposed to the BMAP-28(1-18) at identical peptide/lipid ratios could be responsible for its decreased activity. Residues Ser5, Arg8 and Arg12 of the BMAP-28(1-18) are crucial for its initial anchoring to the bilayer. We conclude that along with amphipathicity, a stable secondary structure that can promote/initiate membrane anchoring is key in determining membrane destabilization potential of these AMPs. Our findings are a step towards understanding the role of specific residues in antimicrobial activity of BMAP-28(1-18), which will facilitate design of smaller, cost-effective therapeutics and would also help prediction algorithms to expedite screening out variants of the parent peptide with greater accuracy.
2. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA)
Yijie Guo, Meng Xun, Jing Han Medicine (Baltimore). 2018 Oct;97(42):e12832. doi: 10.1097/MD.0000000000012832.
Antimicrobial peptides (AMPs) exhibit multiple activities against bacteria and fungi. A bovine myeloid antimicrobial peptide (BMAP-28) belongs to the cathelicidin-derived AMPs and has antimicrobial activity. Due to the rapidly increasing number of infections and outbreaks caused by pan-drug-resistant Acinetobacter baumannii (PDRAB), we sought to determine whether BMAP-28 and its 4 analog peptides (A837, A838, A839, and A840) have antimicrobial activity against PDRAB. Furthermore, we clarified the possible mechanism of inhibition by which of BMAP-28 acts against PDRAB. In the current study, we examined the inhibitory effect of BMAP-28 and its 4 analog peptides on the growth of PDRAB through minimal inhibitory concentration (MIC) analysis and short time killing assays. We also evaluated the effects of BMAP-28 and its analogs on the bacterial cell surface through the use of field emission scanning electron microscopy (FE-SEM). In order to determine the inhibitory mechanism of BMAP-28, we examined the interaction between BMAP-28 and outer membrane proteins (OMPs), especially the interaction between BMAP-28 and A. baumannii OmpA (AbOmpA), which is the main component of OMPs, by using a quartz crystal microbalance (QCM). BMAP-28 and its 4 analogs were effective in inhibiting the growth of PDRAB and had rapid killing ability. BMAP-28 showed exceptionally strong and rapid inhibitory effects on PDRAB when compared to the other peptides and was also shown to cause damage to the cell surface of PDRAB. Moreover, QCM analysis provided evidence of potential interaction between BMAP-28 and AbOmpA. These data indicate that BMAP-28 is a promising candidate for the treatment of PDRAB infections and that its inhibitory effects were related with its binding to AbOmpA.
3. Antimicrobial activity of a bovine myeloid antimicrobial peptide (BMAP-28) against methicillin-susceptible and methicillin-resistant Staphylococcus aureus
Shiaki Takagi, Shunji Hayashi, Koichi Takahashi, Hiroshi Isogai, Lanlan Bai, Hiroshi Yoneyama, Tasuke Ando, Kumiko Ito, Emiko Isogai Anim Sci J. 2012 Jun;83(6):482-6. doi: 10.1111/j.1740-0929.2011.00979.x. Epub 2011 Nov 16.
A bovine myeloid antimicrobial peptide (BMAP-28) is a member of the cathelicidin family which is included in the innate immune system of mammals. Recently, there have been many studies about antimicrobial peptides. This study aims to clarify whether BMAP-28 has bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and compares its activity against methicillin-susceptible S. aureus (MSSA) and MRSA. We found that the peptide was effective in killing MRSA (minimal inhibitory concentration (MIC) range; 5-20 µg/mL). It was also revealed that MSSA (MIC range; 1.25-20 µg/mL) had two levels of susceptibility to BMAP-28. We also examined the effect of BMAP-28 on bacterial shape to visually show its activity. After exposure to the peptide, both MSSA and MRSA cells showed the morphological changes on their surfaces. Our results indicate that BMAP-28 is a promising candidate for medicine against drug-resistant bacteria.
Online Inquiry
Verification code
Inquiry Basket