Myeloid cathelicidin 1
Need Assistance?
  • US & Canada:
    +
  • UK: +

Myeloid cathelicidin 1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Cathelicidin-derived antimicrobial peptides are a component of the peptide-based host defense of neutrophils and epithelia, with a widespread distribution in mammals. A broad spectrum of antimicrobial activity was demonstrated for eCATH-1 and eCATH-3, while the equine cathelicidin, eCATH-2 had antibacterial activity restricted to E. coli, S. aureus.

Category
Functional Peptides
Catalog number
BAT-011901
Synonyms
CATH-1 protein; CAP18; eCATH-1
Sequence
KRFGRLAKSFLRMRILLPRRKILLAS
1. PU.1 and epigenetic signals modulate 1,25-dihydroxyvitamin D3 and C/EBPα regulation of the human cathelicidin antimicrobial peptide gene in lung epithelial cells
Ran Wei, Puneet Dhawan, Robert A Baiocchi, Ki-Yoon Kim, Sylvia Christakos J Cell Physiol. 2019 Jul;234(7):10345-10359. doi: 10.1002/jcp.27702. Epub 2018 Nov 1.
LL-37, the only known human cathelicidin which is encoded by the human antimicrobial peptide (CAMP) gene, plays a critical role in protection against bacterial infection. We previously demonstrated that cathelicidin is induced by 1,25-dihydroxyvitamin D3 (1,25(OH) 2 D 3 ) in human airway epithelial cells with a resultant increase in bactericidal activity. In this study we identify key factors that co-operate with 1,25(OH) 2 D 3 in the regulation of CAMP. Our results show for the first time that PU.1, the myeloid transcription factor (which has also been identified in lung epithelial cells), co-operates with the vitamin D receptor and CCAAT/enhancer binding protein α (CEBPα) to enhance the induction of CAMP in lung epithelial cells. Our findings also indicate that enhancement of 1,25(OH) 2 D 3 regulation of CAMP by histone deacetylase inhibitors involves co-operation between acetylation and chromatin remodeling through Brahma-related gene 1 (BRG1; a component of the SWItch/sucrose nonfermentable [SWI/SNF] complex). BRG1 can be an activator or repressor depending on BRG1-associated factors. Protein arginine methyltransferase 5 (PRMT5), a methlytransferase which interacts with BRG1, represses 1,25(OH) 2 D 3 induced CAMP in part through dimethylation of H4R3. Our findings identify key mediators involved in the regulation of the CAMP gene in lung epithelial cells and suggest new approaches for therapeutic manipulation of gene expression to increase the antibacterial capability of the airway.
2. Psoriasis and Antimicrobial Peptides
Toshiya Takahashi, Kenshi Yamasaki Int J Mol Sci. 2020 Sep 16;21(18):6791. doi: 10.3390/ijms21186791.
Psoriasis is a systemic inflammatory disease caused by crosstalk between various cells such as T cells, neutrophils, dendritic cells, and keratinocytes. Antimicrobial peptides (AMPs) such as β-defensin, S100, and cathelicidin are secreted from these cells and activate the innate immune system through various mechanisms to induce inflammation, thus participating in the pathogenesis of psoriasis. In particular, these antimicrobial peptides enhance the binding of damage-associated molecular patterns such as self-DNA and self-RNA to their receptors and promote the secretion of interferon from activated plasmacytoid dendritic cells and keratinocytes to promote inflammation in psoriasis. Neutrophil extracellular traps (NETs), complexes of self-DNA and proteins including LL-37 released from neutrophils in psoriatic skin, induce Th17. Activated myeloid dendritic cells secrete a mass of inflammatory cytokines such as IL-12 and IL-23 in psoriasis, which is indispensable for the proliferation and survival of T cells that produce IL-17. AMPs enhance the production of some of Th17 and Th1 cytokines and modulate receptors and cellular signaling in psoriasis. Inflammation induced by DAMPs, including self-DNA and RNA released due to microinjuries or scratches, and the enhanced recognition of DAMPs by AMPs, may be involved in the mechanism underlying the Köbner phenomenon in psoriasis.
3. Expression of the antimicrobial peptide cathelicidin in myeloid cells is required for lung tumor growth
D Li, C Beisswenger, C Herr, R M Schmid, R L Gallo, G Han, T Zakharkina, R Bals Oncogene. 2014 May 22;33(21):2709-16. doi: 10.1038/onc.2013.248. Epub 2013 Jul 1.
Antimicrobial peptides, such as the cathelicidin LL-37/hCAP-18 and its mouse homolog cathelicidin-related antimicrobial peptide (CRAMP), are important effectors of the innate immune system with direct anti-bacterial activity. Cathelicidin is possibly involved in the regulation of tumor cell growth. The aim of this study was to characterize the role of cathelicidin expressed in non-tumorous cells in a preclinical mouse model of tumor growth. Wild-type and CRAMP-deficient animals were exposed to cigarette smoke (CS) and Lewis lung carcinoma cells were injected to initiate the growth of tumors in the lung. CS exposure significantly increased the proliferation of lung tumors in wild-type mice, but not in CRAMP-deficient mice. CS exposure induced the recruitment of myeloid cell into tumor tissue in a CRAMP-dependent manner. Mice lacking RelA/p65 specifically in myeloid cells showed impaired recruitment of CRAMP-positive cells into the lung. In vitro studies with human cells showed that LL-37/hCAP-18 in macrophages is induced by soluble factors derived from cancer cells. Taken together, these data indicate that cathelicidin expressed from myeloid cells promotes CS-induced lung tumor growth by further recruitment of inflammatory cells. The regulation of cathelicidin expression involves myeloid p65/RelA and soluble factor from tumor cells.
Online Inquiry
Verification code
Inquiry Basket