N-α-(9-Fluorenylmethoxycarbonyl)-S-diphenylmethyl-L-cysteine
Need Assistance?
  • US & Canada:
    +
  • UK: +

N-α-(9-Fluorenylmethoxycarbonyl)-S-diphenylmethyl-L-cysteine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-001799
CAS number
247595-29-5
Molecular Formula
C31H27NO4S
Molecular Weight
509.63
IUPAC Name
(2R)-3-benzhydrylsulfanyl-2-(9H-fluoren-9-ylmethoxycarbonylamino)propanoic acid
Synonyms
Fmoc-Cys(Dpm)-OH; Fmoc-Cys(CH-Ph2)-OH
Boiling Point
714.3±60.0°C(Predicted)
Storage
Store at 2-8 °C
InChI
InChI=1S/C31H27NO4S/c33-30(34)28(20-37-29(21-11-3-1-4-12-21)22-13-5-2-6-14-22)32-31(35)36-19-27-25-17-9-7-15-23(25)24-16-8-10-18-26(24)27/h1-18,27-29H,19-20H2,(H,32,35)(H,33,34)/t28-/m0/s1
InChI Key
IVPLDYIPIHKRET-NDEPHWFRSA-N
Canonical SMILES
C1=CC=C(C=C1)C(C2=CC=CC=C2)SCC(C(=O)O)NC(=O)OCC3C4=CC=CC=C4C5=CC=CC=C35

N-α-(9-Fluorenylmethoxycarbonyl)-S-diphenylmethyl-L-cysteine, known as Fmoc-Dpm-L-Cys, holds a pivotal role in bioscience research and biotechnology. Here are four key applications of this compound:

Peptide Synthesis: In the realm of solid-phase peptide synthesis (SPPS), Fmoc-Dpm-L-Cys stands as a cornerstone for producing cysteine-containing peptides. Serving as a shielded form of cysteine, it shields against unwanted side reactions during the assembly of peptide chains. This capability empowers researchers to construct intricate peptides for various applications, spanning from enzyme activity assays to the development of pharmaceutical agents.

Protein Engineering: Through the utilization of Fmoc-Dpm-L-Cys in protein engineering endeavors, researchers can introduce specific cysteine residues into recombinant proteins. These modified proteins open doors for site-specific labeling, disulfide bond creation, or conjugation with other biomolecules. Such modifications are essential for comprehending the intricate relationships between protein structure and function, leading to the advancement of protein-based therapeutics.

Bioconjugation Studies: Fmoc-Dpm-L-Cys takes center stage in bioconjugation studies, playing a crucial role in constructing well-defined biomolecular assemblies. By facilitating the precise integration of cysteine residues into peptides or proteins, researchers can conjugate them to a myriad of probes, drugs, or functional groups. These conjugates find applications across a wide spectrum, from targeted drug delivery systems to cutting-edge diagnostic tools.

Chemical Biology: Embraced by chemical biology enthusiasts, Fmoc-Dpm-L-Cys serves as a key component in probing the chemistry of protein modifications and interactions. By incorporating this compound into specific sites within proteins or peptides, researchers can delve into the impacts of post-translational modifications or pinpoint protein-protein interaction sites. This exploration yields valuable insights into cellular processes and unveils potential therapeutic targets for future investigations.

1. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine
C M Gross, D Lelièvre, C K Woodward, G Barany J Pept Res. 2005 Mar;65(3):395-410. doi: 10.1111/j.1399-3011.2005.00241.x.
Native chemical ligation has proven to be a powerful method for the synthesis of small proteins and the semisynthesis of larger ones. The essential synthetic intermediates, which are C-terminal peptide thioesters, cannot survive the repetitive piperidine deprotection steps of N(alpha)-9-fluorenylmethoxycarbonyl (Fmoc) chemistry. Therefore, peptide scientists who prefer to not use N(alpha)-t-butyloxycarbonyl (Boc) chemistry need to adopt more esoteric strategies and tactics in order to integrate ligation approaches with Fmoc chemistry. In the present work, side-chain and backbone anchoring strategies have been used to prepare the required suitably (partially) protected and/or activated peptide intermediates spanning the length of bovine pancreatic trypsin inhibitor (BPTI). Three separate strategies for managing the critical N-terminal cysteine residue have been developed: (i) incorporation of N(alpha)-9-fluorenylmethoxycarbonyl-S-(N-methyl-N-phenylcarbamoyl)sulfenylcysteine [Fmoc-Cys(Snm)-OH], allowing creation of an otherwise fully protected resin-bound intermediate with N-terminal free Cys; (ii) incorporation of N(alpha)-9-fluorenylmethoxycarbonyl-S-triphenylmethylcysteine [Fmoc-Cys(Trt)-OH], generating a stable Fmoc-Cys(H)-peptide upon acidolytic cleavage; and (iii) incorporation of N(alpha)-t-butyloxycarbonyl-S-fluorenylmethylcysteine [Boc-Cys(Fm)-OH], generating a stable H-Cys(Fm)-peptide upon cleavage. In separate stages of these strategies, thioesters are established at the C-termini by selective deprotection and coupling steps carried out while peptides remain bound to the supports. Pilot native chemical ligations were pursued directly on-resin, as well as in solution after cleavage/purification.
2. A 'conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile--the pharmacological importance of post-translational modifications
Zachary L Bergeron, et al. Peptides. 2013 Nov;49:145-58. doi: 10.1016/j.peptides.2013.09.004. Epub 2013 Sep 18.
Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named α-conotoxin TxIC. We assign this conopeptide to the 4/7 α-conotoxin family based on the peptide's sequence homology and cDNA pre-propeptide alignment. Pharmacologically, α-conotoxin TxIC demonstrates minimal activity on human acetylcholine receptor models (100 μM, <5% inhibition), compared to its high paralytic potency in invertebrates, PD50 = 34.2 nMol kg(-1). The non-post-translationally modified form, [Pro](2,8)[Glu](16)α-conotoxin TxIC, demonstrates differential selectivity for the α3β2 isoform of the nicotinic acetylcholine receptor with maximal inhibition of 96% and an observed IC50 of 5.4 ± 0.5 μM. Interestingly its comparative PD50 (3.6 μMol kg(-1)) in invertebrates was ~100 fold more than that of the native peptide. Differentiating α-conotoxin TxIC from other α-conotoxins is the high degree of post-translational modification (44% of residues). This includes the incorporation of γ-carboxyglutamic acid, two moieties of 4-trans hydroxyproline, two disulfide bond linkages, and C-terminal amidation. These findings expand upon the known chemical diversity of α-conotoxins and illustrate a potential driver of toxin phyla-selectivity within Conus.
3. Syntheses of T(N) building blocks Nalpha-(9-fluorenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosyl)-L-serine/L-threonine pentafluorophenyl esters: comparison of protocols and elucidation of side reactions
Mian Liu, Victor G Young Jr, Sachin Lohani, David Live, George Barany Carbohydr Res. 2005 May 23;340(7):1273-85. doi: 10.1016/j.carres.2005.02.029.
T(N) antigen building blocks Nalpha-(9-fluorenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosyl)-L-serine/L-threonine pentafluorophenyl ester [Fmoc-L-Ser/L-Thr(Ac3-alpha-D-GalN3)-OPfp, 13/14] have been synthesized by two different routes, which have been compared. Overall isolated yields [three or four chemical steps, and minimal intermediary purification steps] of enantiopure 13 and 14 were 5-18% and 6-10%, respectively, based on 3,4,6-tri-O-acetyl-D-galactal (1). A byproduct of the initial azidonitration reaction of the synthetic sequence, that is, N-acetyl-3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosylamine (5), has been characterized by X-ray crystallography, and shown by 1H NMR spectroscopy to form complexes with lithium bromide, lithium iodide, or sodium iodide in acetonitrile-d3. Intermediates 3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosyl bromide (6) and 3,4,6-tri-O-acetyl-2-azido-2-deoxy-beta-D-galactopyranosyl chloride (7) were used to glycosylate Nalpha-(9-fluorenylmethoxycarbonyl)-L-serine/L-threonine pentafluorophenyl esters [Fmoc-L-Ser/L-Thr-OPfp, 11/12]. Previously undescribed low-level dehydration side reactions were observed at this stage; the unwanted byproducts were easily removed by column chromatography.
Online Inquiry
Verification code
Inquiry Basket