N-Acetyl-L-proline N-methylamide
Need Assistance?
  • US & Canada:
    +
  • UK: +

N-Acetyl-L-proline N-methylamide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Cyclic Amino Acids
Catalog number
BAT-005897
CAS number
19701-85-0
Molecular Formula
C8H14N2O2
Molecular Weight
170.21
N-Acetyl-L-proline N-methylamide
IUPAC Name
(2S)-1-acetyl-N-methylpyrrolidine-2-carboxamide
Synonyms
Ac-Pro-NHMe; (S)-1-Acetyl-N-methylpyrrolidine-2-carboxamide
InChI
InChI=1S/C8H14N2O2/c1-6(11)10-5-3-4-7(10)8(12)9-2/h7H,3-5H2,1-2H3,(H,9,12)/t7-/m0/s1
InChI Key
DPDXFAYSYVRXMF-ZETCQYMHSA-N
Canonical SMILES
CC(=O)N1CCCC1C(=O)NC
2. Ab initio conformational study of N-acetyl-L-proline-N',N'-dimethylamide: a model for polyproline
Young Kee Kang, Hae Sook Park Biophys Chem. 2005 Jan 1;113(1):93-101. doi: 10.1016/j.bpc.2004.08.002.
We report here the results on N-acetyl-l-proline-N',N'-dimethylamide (Ac-Pro-NMe2) as a model for polyproline at the HF/6-31+G(d) level with the conductor-like polarizable continuum model of self-consistent reaction field methods to figure out the conformational preference and cis-trans isomerization of polyproline in the gas phase, chloroform, methanol, and water. The second methyl substitution at the carboxyl amide end results in different backbone structures and their populations from those of N-acetyl-L-proline-N-methylamide (Ac-Pro-NHMe). In particular, all conformations with the C7 hydrogen bond between acetyl and amide ends, which is the most probable conformations of Ac-Pro-NHMe in the gas phase and in nonpolar solvents, disappeared for Ac-Pro-NMe2 even in the gas phase due to the lack of amide hydrogen. The dominant conformation for Ac-Pro-NMe2 is the polyproline II structure with the trans prolyl peptide bond in the gas phase and in solutions. In methanol, the population of the polyproline I structure with the cis prolyl peptide bond is calculated to be larger than that in water, which is consistent with experiments. It should be noted that Ac-Pro-NMe2 has higher rotational barriers for the cis-trans isomerization of the Ac-Pro peptide bond than Ac-Pro-NHMe in the gas phase and in solutions, which could be due to the lack of the intramolecular hydrogen bond between prolyl nitrogen and carboxyl N-H group for the transition state of Ac-Pro-NMe2. The rotational barriers for Ac-Pro-NMe2 are increased with the increase of solvent polarity, as seen for Ac-Pro-NHMe.
3. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures
R N V Krishna Deepak, Ramasubbu Sankararamakrishnan Biophys J. 2016 May 10;110(9):1967-79. doi: 10.1016/j.bpj.2016.03.034.
Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(*) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.
Online Inquiry
Verification code
Inquiry Basket