N-α-Carbobenzoxy-D-histidine methyl ester
Need Assistance?
  • US & Canada:
    +
  • UK: +

N-α-Carbobenzoxy-D-histidine methyl ester

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
CBZ-Amino Acids
Catalog number
BAT-005976
CAS number
183866-89-9
Molecular Formula
C15H17N3O4
Molecular Weight
303.31
N-α-Carbobenzoxy-D-histidine methyl ester
IUPAC Name
methyl (2R)-3-(1H-imidazol-5-yl)-2-(phenylmethoxycarbonylamino)propanoate
Synonyms
Z-D-His-OMe
InChI
InChI=1S/C15H17N3O4/c1-21-14(19)13(7-12-8-16-10-17-12)18-15(20)22-9-11-5-3-2-4-6-11/h2-6,8,10,13H,7,9H2,1H3,(H,16,17)(H,18,20)/t13-/m1/s1
InChI Key
KLEOALLEVMGHEC-CYBMUJFWSA-N
Canonical SMILES
COC(=O)C(CC1=CN=CN1)NC(=O)OCC2=CC=CC=C2
1. O-Methylation of carboxylic acids with streptozotocin
Li-Yan Zeng, Yang Liu, Jiakun Han, Jinhong Chen, Shuwen Liu, Baomin Xi Org Biomol Chem. 2022 Jul 6;20(26):5230-5233. doi: 10.1039/d2ob00578f.
The clinically used DNA-alkylating drug streptozotocin (STZ) was investigated using a simple work-up as an O-methylating agent to transform various carboxylic acids, sulfonic acids and phosphorous acids into corresponding methyl esters, and did so with yields of up to 97% in 4 h at room temperature. Good substrate tolerance was observed, and benefited from the mild conditions and compatibility of the reaction with water.
2. Synthesis of New Cyclopeptide Analogues of the Miuraenamides
Sarah Kappler, Andreas Siebert, Uli Kazmaier Curr Org Synth. 2021;18(4):418-424. doi: 10.2174/1570179418666210113161550.
Introduction: Miuraenamides belong to natural marine compounds with interesting biological properties. Materials and methods: Miuraenamides initiate polymerization of monomeric actin and therefore show high cytotoxicity by influencing the cytoskeleton. New derivatives of the miuraenamides have been synthesized containing an N-methylated amide bond instead of the more easily hydrolysable ester in the natural products. Results: Incorporation of an aromatic side chain onto the C-terminal amino acid of the tripeptide fragment also led to highly active new miuraenamides. Conclusion: In this study, we showed that the ester bond of the natural product miuraenamide can be replaced by an N-methyl amide. The yields in the cyclization step were high and generally much better than with the corresponding esters. On the other hand, the biological activity of the new amide analogs was lower compared to the natural products, but the activity could significantly be increased by incorporation of a p-nitrophenyl group at the C-terminus of the peptide fragment.
3. Acridinium Ester Chemiluminescence: Methyl Substitution on the Acridine Moiety
Manabu Nakazono, Shinkoh Nanbu, Takeyuki Akita, Kenji Hamase J Oleo Sci. 2021;70(11):1677-1684. doi: 10.5650/jos.ess21186.
Methyl groups were introduced on the acridine moiety in chemiluminescent acridinium esters that have electron-withdrawing groups (trifluoromethyl, cyano, nitro, ethoxycarbonyl) at the 4-position on the phenyl ester. The introduction of methyl groups at the 2-, 2,7-, and 2,3,6,7-positions on the acridine moiety shifted the optimal pH that gave relatively strong chemiluminescence intensity from neutral conditions to alkaline conditions. 4-(Ethoxycarbonyl)phenyl 2,3,6,7,10-pentamethyl-10λ4-acridine-9-carboxylate, trifluoromethanesulfonate salt showed long-lasting chemiluminescence under alkaline conditions. Acridinium esters to determine hydrogen peroxide concentration at pH 7-10 were newly developed.
Online Inquiry
Verification code
Inquiry Basket