N-α-Carbobenzoxy-N-ε-(9-fluorenylmethoxycarbonyl)-L-lysine
Need Assistance?
  • US & Canada:
    +
  • UK: +

N-α-Carbobenzoxy-N-ε-(9-fluorenylmethoxycarbonyl)-L-lysine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
CBZ-Amino Acids
Catalog number
BAT-005524
CAS number
105751-18-6
Molecular Formula
C29H30N2O6
Molecular Weight
502.57
N-α-Carbobenzoxy-N-ε-(9-fluorenylmethoxycarbonyl)-L-lysine
IUPAC Name
(2S)-6-(9H-fluoren-9-ylmethoxycarbonylamino)-2-(phenylmethoxycarbonylamino)hexanoic acid
Synonyms
Z-Lys(Fmoc)-OH; NEPSILON-FMOC-NALPHA-CBZ-L-LYSINE; Cbz-Lys(Fmoc)-OH; N-Fmoc-N-benzyloxycarbonyl-L-lysine
Appearance
White powder
Purity
≥ 95%
Density
1.242 g/cm3
Melting Point
101 °C
Boiling Point
592.7°C
Storage
Refrigerator (+4ºC)
InChI
InChI=1S/C29H30N2O6/c32-27(33)26(31-29(35)36-18-20-10-2-1-3-11-20)16-8-9-17-30-28(34)37-19-25-23-14-6-4-12-21(23)22-13-5-7-15-24(22)25/h1-7,10-15,25-26H,8-9,16-19H2,(H,30,34)(H,31,35)(H,32,33)/t26-/m0/s1
InChI Key
LNKKPRSYVVUBTR-SANMLTNESA-N
Canonical SMILES
C1=CC=C(C=C1)COC(=O)NC(CCCCNC(=O)OCC2C3=CC=CC=C3C4=CC=CC=C24)C(=O)O
1. Highly branched poly(L-lysine)
Juan Rodríguez-Hernández, Marco Gatti, Harm-Anton Klok Biomacromolecules. 2003 Mar-Apr;4(2):249-58. doi: 10.1021/bm020096k.
This paper describes the synthesis of several novel water-soluble highly branched polypeptides. The synthesis starts with the ring-opening polymerization of epsilon-benzyloxycarbonyl-l-lysine N-carboxyanhydride (Z-Lys NCA) or epsilon-trifluoroacetyl-l-lysine N-carboxyanhydride (TFA-Lys NCA), followed by end functionalization of the peptide chain with N(alpha),N(epsilon)-di(9-fluorenylmethoxycarbonyl)-l-lysine (N(alpha),N(epsilon)-diFmoc Lys). Deprotection of the N(alpha),N(epsilon)-diFmoc Lys end group affords two new primary amine groups that can initiate the polymerization of a second generation of branches. Repetition of this ring-opening polymerization-end functionalization sequence affords highly branched poly(epsilon-benzyloxycarbonyl-l-lysine) (poly(Z-Lys)) and poly(epsilon-trifluoroacetyl-l-lysine) (poly(TFA-Lys)) in a small number of straightforward synthetic steps. Removal of the side-chain protective groups yields water-soluble and highly branched poly(l-lysine)s, which may be of potential interest for a variety of medical applications.
2. New Hydrogels Based on Agarose/Phytagel and Peptides
Loredana Elena Nita, et al. Macromol Biosci. 2022 Dec 24;e2200451. doi: 10.1002/mabi.202200451. Online ahead of print.
Short aromatic peptide derivatives, i.e., peptides or amino acids modified with aromatic groups, such as 9-fluorenylmethoxycarbonyl (Fmoc), can self-assemble into extracellular matrix-like hydrogels due to their nanofibrillar architecture. Among different types of amino acids, lysine (Lys) and glycine (Gly) are involved in multiple physiological processes, being key factors in the proper growth of cells, carnitine production, and collagen formation. The authors have previously successfully presented the possibility of obtaining supramolecular gels based on Fmoc-Lys-Fmoc and short peptides such as Fmoc-Gly-Gly-Gly in order to use them as a substrate for cell cultures. This paper investigates how the introduction of a gelling polymer can influence the properties of the network as well as the compatibility of the resulting materials with different cell types. A series of hydrogel compositions consisting of combinations of Fmoc-Lys-Fmoc and Fmoc-Gly-Gly-Gly with Agarose and Phytagel are thus obtained. All compositions form structured gels as shown by rheological studies and scanning electron microscopy. Fourier transform infrared spectroscopy analysis evidences the formation of H-bonds between the polysaccharides and amino acids or short peptides. Moreover, all gels exhibit good cell viability on fibroblasts as demonstrated by a live-dead staining test and good in vivo biocompatibility, which highlights the great potential of these biomaterials for biomedical applications.
3. Synthesis and Characterization of the Novel Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-Carboxy Anhydride. Synthesis of Well-Defined Linear and Branched Polypeptides
Varvara Athanasiou, et al. Polymers (Basel). 2020 Nov 27;12(12):2819. doi: 10.3390/polym12122819.
The synthesis of well-defined polypeptides exhibiting complex macromolecular architectures requires the use of monomers that can be orthogonally deprotected, containing primary amines that will be used as the initiator for the Ring Opening Polymerization (ROP) of N-carboxy anhydrides. The synthesis and characterization of the novel monomer Nε-9-Fluorenylmethoxycarbonyl-l-Lysine N-carboxy anhydride (Nε-Fmoc-l-Lysine NCA), as well as the novel linear Poly(Nε-Fmoc-l-Lys)n homopolypeptide and Poly(l-Lysine)78-block-[Poly(l-Lysine)10-graft-Poly(l-Histidine)15] block-graft copolypeptide, are presented. The synthesis of the graft copolypeptide was conducted via ROP of the Nε-Boc-l-Lysine NCA while using n-hexylamine as the initiator, followed by the polymerization of Nε-Fmoc-l-Lysine NCA. The last block was selectively deprotected under basic conditions, and the resulting ε-amines were used as the initiating species for the ROP of Nim-Trityl-l-Histidine NCA. Finally, the Boc- and Trt- groups were deprotected by TFA. High Vacuum Techniques were applied to achieve the conditions that are required for the synthesis of well-defined polypeptides. The molecular characterization indicated that the polypeptides exhibited high degree of molecular and compositional homogeneity. Finally, Dynamic Light Scattering, ζ-potential, and Circular Dichroism measurements were used in order to investigate the ability of the polypeptide to self-assemble in different conditions. This monomer opens avenues for the synthesis of polypeptides with complex macromolecular architectures that can define the aggregation behavior, and, therefore, can lead to the synthesis of "smart" stimuli-responsive nanocarriers for controlled drug delivery applications.
Online Inquiry
Verification code
Inquiry Basket