N-α-Methyl-O-(t-butyl)-L-tyrosine
Need Assistance?
  • US & Canada:
    +
  • UK: +

N-α-Methyl-O-(t-butyl)-L-tyrosine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
L-Amino Acids
Catalog number
BAT-004780
CAS number
343631-38-9
Molecular Formula
C14H21NO3
Molecular Weight
251.32
N-α-Methyl-O-(t-butyl)-L-tyrosine
IUPAC Name
(2S)-2-(methylamino)-3-[4-[(2-methylpropan-2-yl)oxy]phenyl]propanoic acid
Synonyms
H-MeTyr(tBu)-OH; H-MePhe(4-OtBu)-OH; N-α-Methyl-4-(t-butoxy)-L-phenylalanine
Storage
Store at 2-8°C
InChI
InChI=1S/C14H21NO3/c1-14(2,3)18-11-7-5-10(6-8-11)9-12(15-4)13(16)17/h5-8,12,15H,9H2,1-4H3,(H,16,17)/t12-/m0/s1
InChI Key
SPGJOSPCBLHAMK-LBPRGKRZSA-N
Canonical SMILES
CC(C)(C)OC1=CC=C(C=C1)CC(C(=O)O)NC
1. Tyrosine nitration, dimerization, and hydroxylation by peroxynitrite in membranes as studied by the hydrophobic probe N-t-BOC-l-tyrosine tert-butyl ester
Silvina Bartesaghi, Gonzalo Peluffo, Hao Zhang, Joy Joseph, Balaraman Kalyanaraman, Rafael Radi Methods Enzymol. 2008;441:217-36. doi: 10.1016/S0076-6879(08)01212-3.
Protein tyrosine oxidation mechanisms in hydrophobic biocompartments (i.e., biomembranes, lipoproteins) leading to nitrated, dimerized, and hydroxylated products are just starting to be appreciated. This chapter reports on the use of the hydrophobic tyrosine analog N-t-BOC-l-tyrosine tert-butyl ester (BTBE) incorporated to phosphatidyl choline liposomes to study peroxynitrite-dependent tyrosine oxidation processes in model biomembranes. The probe proved to be valuable in defining the role of biologically relevant variables in the oxidation process, including the action of hydrophilic and hydrophobic peroxynitrite and peroxynitrite-derived free radical scavengers, transition metal catalysts, carbon dioxide, molecular oxygen, pH, and fatty acid unsaturation degree. Moreover, detection of the BTBE phenoxyl radical and relative product distribution yields of 3-nitro-, 3,3'-di-, and 3-hydroxy-BTBE in the membrane fully accommodate with a free radical mechanism of tyrosine oxidation, with physical chemical and biochemical determinants that in several respects differ of those participating in aqueous environments. The methods presented herein can be extended to explore the reaction mechanisms of tyrosine oxidation by other biologically relevant oxidants and in other hydrophobic biocompartments.
2. Shear Stress and VE-Cadherin
Vincenza Caolo, Hanna M Peacock, Bahar Kasaai, Geertje Swennen, Emma Gordon, Lena Claesson-Welsh, Mark J Post, Peter Verhamme, Elizabeth A V Jones Arterioscler Thromb Vasc Biol. 2018 Sep;38(9):2174-2183. doi: 10.1161/ATVBAHA.118.310823.
Objective- Vascular fusion represents an important mechanism of vessel enlargement during development; however, its significance in postnatal vessel enlargement is still unknown. During fusion, 2 adjoining vessels merge to share 1 larger lumen. The aim of this research was to identify the molecular mechanism responsible for vascular fusion. Approach and Results- We previously showed that both low shear stress and DAPT ( N-[ N-(3,5-difluorophenacetyl)-L-alanyl]- S-phenylglycine t-butyl ester) treatment in the embryo result in a hyperfused vascular plexus and that increasing shear stress levels could prevent DAPT-induced fusion. We, therefore, investigated vascular endothelial-cadherin (VEC) phosphorylation because this is a common downstream target of low shear stress and DAPT treatment. VEC phosphorylation increases after DAPT treatment and decreased shear stress. The increased phosphorylation occurred independent of the cleavage of the Notch intracellular domain. Increasing shear stress rescues hyperfusion by DAPT treatment by causing the association of the phosphatase vascular endothelial-protein tyrosine phosphatase with VEC, counteracting VEC phosphorylation. Finally, Src (proto-oncogene tyrosine-protein kinase Src) inhibition prevents VEC phosphorylation in endothelial cells and can rescue hyperfusion induced by low shear stress and DAPT treatment. Moesin, a VEC target that was previously reported to mediate endothelial cell rearrangement during lumenization, relocalizes to cell membranes in vascular beds undergoing hyperfusion. Conclusions- This study provides the first evidence that VEC phosphorylation, induced by DAPT treatment and low shear stress, is involved in the process of fusion during vascular remodeling.
3. Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester
Silvina Bartesaghi, Valeria Valez, Madia Trujillo, Gonzalo Peluffo, Natalia Romero, Hao Zhang, Balaraman Kalyanaraman, Rafael Radi Biochemistry. 2006 Jun 6;45(22):6813-25. doi: 10.1021/bi060363x.
Most of the mechanistic studies of tyrosine nitration have been performed in aqueous solution. However, many protein tyrosine residues shown to be nitrated in vitro and in vivo are associated to nonpolar compartments. In this work, we have used the stable hydrophobic tyrosine analogue N-t-BOC-L-tyrosine tert-butyl ester (BTBE) incorporated into phosphatidylcholine (PC) liposomes to study physicochemical and biochemical factors that control peroxynitrite-dependent tyrosine nitration in phospholipid bilayers. Peroxynitrite leads to maximum 3-nitro-BTBE yields (3%) at pH 7.4. In addition, small amounts of 3,3'-di-BTBE were formed at pH 7.4 (0.02%) which increased over alkaline pH; at pH 6, a hydroxylated derivative of BTBE was identified by HPLC-MS analysis. BTBE nitration yields were similar in dilauroyl- and dimyristoyl-PC and were also significant in the polyunsaturated fatty acid-containing egg PC. *OH and *NO2 scavengers inhibited BTBE nitration. In contrast to tyrosine in the aqueous phase, the presence of CO2 decreased BTBE nitration, indicating that CO3*- cannot permeate to the compartment where BTBE is located. On the other hand, micromolar concentrations of hemin and Mn-tccp strongly enhanced BTBE nitration. Electron spin resonance (ESR) detection of the BTBE phenoxyl radical and kinetic modeling of the pH profiles of BTBE nitration and dimerization were in full agreement with a free radical mechanism of oxidation initiated by ONOOH homolysis in the immediacy of or even inside the bilayer and with a diffusion coefficient of BTBE phenoxyl radical 100 times less than for the aqueous phase tyrosyl radical. BTBE was successfully applied as a hydrophobic probe to study nitration mechanisms and will serve to study factors controlling protein and lipid nitration in biomembranes and lipoproteins.
Online Inquiry
Verification code
Inquiry Basket