N-α-(t-Butoxycarbonyl)-2,4-dinitro-L-phenylalanine
Need Assistance?
  • US & Canada:
    +
  • UK: +

N-α-(t-Butoxycarbonyl)-2,4-dinitro-L-phenylalanine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-003061
CAS number
1176509-56-0
Molecular Formula
C14H17N3O8
Molecular Weight
355.30
N-α-(t-Butoxycarbonyl)-2,4-dinitro-L-phenylalanine
IUPAC Name
(2S)-3-(2,4-dinitrophenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid
Synonyms
Boc-Phe{2,4-(NO2)2}-OH; Boc-L-2,4-Dinitrophe; (2S)-3-(2,4-dinitrophenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid; Boc-2,4-Dinitro-L-phenylalanine; Boc-L-Phe(2,4-DiNO2)-OH; (S)-Boc-2-amino-3-(2,4-dinitrophenyl)propionic acid
Appearance
White powder
Purity
≥ 99% (HPLC)
Storage
Store at 2-8 °C
InChI
InChI=1S/C14H17N3O8/c1-14(2,3)25-13(20)15-10(12(18)19)6-8-4-5-9(16(21)22)7-11(8)17(23)24/h4-5,7,10H,6H2,1-3H3,(H,15,20)(H,18,19)/t10-/m0/s1
InChI Key
ANQMEPHYMTWCEW-JTQLQIEISA-N
Canonical SMILES
CC(C)(C)OC(=O)NC(CC1=C(C=C(C=C1)[N+](=O)[O-])[N+](=O)[O-])C(=O)O
1. Amides are novel protein modifications formed by physiological sugars
M A Glomb, C Pfahler J Biol Chem. 2001 Nov 9;276(45):41638-47. doi: 10.1074/jbc.M103557200. Epub 2001 Aug 7.
The Maillard reaction, or nonenzymatic browning, proceeds in vivo, and the resulting protein modifications (advanced glycation end products) have been associated with various pathologies. Despite intensive research only very few structures have been established in vivo. We report here for the first time N(6)-[2-[(5-amino-5-carboxypentyl)amino]-2-oxoethyl]lysine (GOLA) and N(6)-glycoloyllysine (GALA) as prototypes for novel amide protein modifications produced by reducing sugars. Their identity was confirmed by independent synthesis and coupled liquid chromatography/mass spectrometry. Model reactions with N(alpha)-t-butoxycarbonyl-lysine showed that glyoxal and glycolaldehyde are immediate precursors, and reaction pathways are directly linked to N(epsilon)-carboxymethyllysine via glyoxal-imine structures. GOLA, the amide cross-link, and 1,3-bis(5-amino-5-carboxypentyl)imidazolium salt (GOLD), the imidazolium cross-link, share a common intermediate. The ratio of GOLA to GOLD is greater when glyoxal levels are low at constant lysine concentrations. GOLA and GALA formation from the Amadori product of glucose and lysine depends directly upon oxidation. With the advanced glycation end product inhibitors aminoguanidine and pyridoxamine we were able to dissect oxidative fragmentation of the Amadori product as a second mechanism of GOLA formation exactly coinciding with N(epsilon)-carboxymethyllysine synthesis. In contrast, the formation of GALA appears to depend solely upon glyoxal-imines. After enzymatic hydrolysis GOLA was found at 66 pmol/mg of brunescent lens protein. This suggests amide protein modifications as important markers of pathophysiological processes.
2. Substrate recognition by oligosaccharyltransferase. Studies on glycosylation of modified Asn-X-Thr/Ser tripeptides
J K Welply, P Shenbagamurthi, W J Lennarz, F Naider J Biol Chem. 1983 Oct 10;258(19):11856-63.
The minimum primary structural requirement for N-glycosylation of proteins is the sequence -Asn-X-Thr/Ser-. In the present study, NH2-terminal derivatives of Asn-Leu-Thr-NH2 and peptides with asparagine replacements have been tested as substrates or inhibitors of N-glycosylation. The glycosylation of a known acceptor, N alpha-[3H]Ac-Asn-Leu-Thr-NHCH3, was optimized in chicken oviduct microsomes. The reaction was shown to be dependent upon Mn2+ and linear for 10 min at 30 degrees C; the apparent Km for the peptide was found to be 10 microM. N alpha-Acyl derivatives of Asn-Leu-Thr-NH2 (N-acetyl, N-benzoyl, N-octanoyl, or N-t-butoxycarbonyl) inhibited the glycosylation of N alpha-[3H] Ac-Asn-Leu-Thr-NHCH3 in a dose-dependent manner; additional experiments demonstrated that these compounds were alternative substrates rather than true inhibitors. The benzoyl and octanoyl derivatives were 10 times as effective as N alpha-Ac-Asn-Leu-Thr-NH2 in inhibiting glycosylation. In contrast, peptides containing asparagine modifications or substitutions were neither substrates nor inhibitors of N-glycosylation. They did not compete for glycosylation of 3H-peptide at 100-fold greater concentrations, and did not deplete endogenous pools of oligosaccharide-lipid. Thus, the asparagine side chain is an absolute requirement for recognition by the transferase. The majority of the glycosylated product (61%), but only 1% of the unglycosylated peptide, remained associated with the microsomes after high speed centrifugation. A large 41-amino acid residue acceptor peptide, alpha-lac17-58, was a poor substitute for glycosylation unless detergent was added to the microsomes. In contrast, glycosylation of tripeptide acceptors was not stimulated by detergent. Both of these findings suggest that the tripeptides are freely permeable to the microsomal membrane and support the earlier conclusion that glycosylation of proteins occurs at the luminal face of the microsomes.
3. Synthesis of tritium-labelled N tau-methylhistamine for the improvement of extraction efficiency of N tau-methylhistamine from biological fluids
T Iwashina, P G Scott, E E Tredget Appl Radiat Isot. 1997 Sep;48(9):1187-91. doi: 10.1016/s0969-8043(96)00310-7.
In order to trace the loss of N tau-methylhistamine, a principal metabolite of histamine, during extraction and purification from human plasma and urine samples, N tau-[3H]methylhistamine was prepared in two steps from N alpha t-butoxycarbonylhistamine (II). In the first step, compound II was deprotonated with NaH in an aprotic solvent and treated with [3H]methyl iodide. The products, N alpha t-butoxycarbonyl-N tau-[3H]methylhistamine (III) and N alpha t-butoxycarbonyl-N pi-[3H]methylhistamine (IV), were then hydrolysed with iodotrimethylsilane under mild and short reaction conditions. Facile purification with Sep-Pak silica cartridges gave the combined two isomers of N tau-[3H]methylhistamine and N pi-[3H]methylhistamine in 10.7% radiochemical yield with a radiochemical purity of > 94% and a ratio of approximately 2:1. Improvements in the extraction of methylhistamine using chromatography on Sep-Pak silica cartridges led to an overall recovery of 82.5 +/- 0.3% (n = 3) based upon total [3H]methylhistamine from normal human plasma.
Online Inquiry
Verification code
Inquiry Basket