N-α-(t-Butoxycarbonyl)-O-benzyl-3-nitro-L-tyrosine
Need Assistance?
  • US & Canada:
    +
  • UK: +

N-α-(t-Butoxycarbonyl)-O-benzyl-3-nitro-L-tyrosine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-003164
CAS number
5191-61-7
Molecular Formula
C21H24N2O7
Molecular Weight
416.42
N-α-(t-Butoxycarbonyl)-O-benzyl-3-nitro-L-tyrosine
IUPAC Name
(2S)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-(3-nitro-4-phenylmethoxyphenyl)propanoic acid
Synonyms
Boc-Tyr(Bzl,3-NO2)-OH; (S)-3-(4-(benzyloxy)-3-nitrophenyl)-2-((tert-butoxycarbonyl)amino)propanoic acid
Purity
95%
InChI
InChI=1S/C21H24N2O7/c1-21(2,3)30-20(26)22-16(19(24)25)11-15-9-10-18(17(12-15)23(27)28)29-13-14-7-5-4-6-8-14/h4-10,12,16H,11,13H2,1-3H3,(H,22,26)(H,24,25)/t16-/m0/s1
InChI Key
DPRXADRSEXVFAO-INIZCTEOSA-N
Canonical SMILES
CC(C)(C)OC(=O)NC(CC1=CC(=C(C=C1)OCC2=CC=CC=C2)[N+](=O)[O-])C(=O)O
1. Synthesis and in vivo distribution of no-carrier-added N(omega)-Nitro-L-arginine [11C]methyl ester, a nitric oxide synthase inhibitor
D Roeda, C Crouzel, E Brouillet, H Valette Nucl Med Biol. 1996 May;23(4):509-12. doi: 10.1016/0969-8051(96)00032-7.
N(omega)-nitro-L-arginine methyl ester (L-NAME) was labelled with carbon-11 as a potential PET tracer for NO synthase. N(alpha)-t-butoxycarbonyl-N(omega)-nitro-L-arginine was reacted with [11C]diazomethane. After deprotection with trifluoroacetic acid the formed [11C]L-NAME was purified using HPLC. Biodistribution studies in rats and PET studies in monkeys and dogs showed no correlation between radioactivity distribution and NO synthase localization in brain and heart. Substantial amounts of [11C]methanol were detected in dog plasma shortly after injection. These findings preclude the use of [11C]L-NAME as a PET tracer.
2. Synthesis of tritium-labelled N tau-methylhistamine for the improvement of extraction efficiency of N tau-methylhistamine from biological fluids
T Iwashina, P G Scott, E E Tredget Appl Radiat Isot. 1997 Sep;48(9):1187-91. doi: 10.1016/s0969-8043(96)00310-7.
In order to trace the loss of N tau-methylhistamine, a principal metabolite of histamine, during extraction and purification from human plasma and urine samples, N tau-[3H]methylhistamine was prepared in two steps from N alpha t-butoxycarbonylhistamine (II). In the first step, compound II was deprotonated with NaH in an aprotic solvent and treated with [3H]methyl iodide. The products, N alpha t-butoxycarbonyl-N tau-[3H]methylhistamine (III) and N alpha t-butoxycarbonyl-N pi-[3H]methylhistamine (IV), were then hydrolysed with iodotrimethylsilane under mild and short reaction conditions. Facile purification with Sep-Pak silica cartridges gave the combined two isomers of N tau-[3H]methylhistamine and N pi-[3H]methylhistamine in 10.7% radiochemical yield with a radiochemical purity of > 94% and a ratio of approximately 2:1. Improvements in the extraction of methylhistamine using chromatography on Sep-Pak silica cartridges led to an overall recovery of 82.5 +/- 0.3% (n = 3) based upon total [3H]methylhistamine from normal human plasma.
3. Substrate recognition by oligosaccharyltransferase. Studies on glycosylation of modified Asn-X-Thr/Ser tripeptides
J K Welply, P Shenbagamurthi, W J Lennarz, F Naider J Biol Chem. 1983 Oct 10;258(19):11856-63.
The minimum primary structural requirement for N-glycosylation of proteins is the sequence -Asn-X-Thr/Ser-. In the present study, NH2-terminal derivatives of Asn-Leu-Thr-NH2 and peptides with asparagine replacements have been tested as substrates or inhibitors of N-glycosylation. The glycosylation of a known acceptor, N alpha-[3H]Ac-Asn-Leu-Thr-NHCH3, was optimized in chicken oviduct microsomes. The reaction was shown to be dependent upon Mn2+ and linear for 10 min at 30 degrees C; the apparent Km for the peptide was found to be 10 microM. N alpha-Acyl derivatives of Asn-Leu-Thr-NH2 (N-acetyl, N-benzoyl, N-octanoyl, or N-t-butoxycarbonyl) inhibited the glycosylation of N alpha-[3H] Ac-Asn-Leu-Thr-NHCH3 in a dose-dependent manner; additional experiments demonstrated that these compounds were alternative substrates rather than true inhibitors. The benzoyl and octanoyl derivatives were 10 times as effective as N alpha-Ac-Asn-Leu-Thr-NH2 in inhibiting glycosylation. In contrast, peptides containing asparagine modifications or substitutions were neither substrates nor inhibitors of N-glycosylation. They did not compete for glycosylation of 3H-peptide at 100-fold greater concentrations, and did not deplete endogenous pools of oligosaccharide-lipid. Thus, the asparagine side chain is an absolute requirement for recognition by the transferase. The majority of the glycosylated product (61%), but only 1% of the unglycosylated peptide, remained associated with the microsomes after high speed centrifugation. A large 41-amino acid residue acceptor peptide, alpha-lac17-58, was a poor substitute for glycosylation unless detergent was added to the microsomes. In contrast, glycosylation of tripeptide acceptors was not stimulated by detergent. Both of these findings suggest that the tripeptides are freely permeable to the microsomal membrane and support the earlier conclusion that glycosylation of proteins occurs at the luminal face of the microsomes.
Online Inquiry
Verification code
Inquiry Basket