α-Neoendorphin 1-8
Need Assistance?
  • US & Canada:
    +
  • UK: +

α-Neoendorphin 1-8

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

α-Neoendorphin (1-8) is a 8-amino acid peptide derived from the N-terminal of α-Neoendorphin which is an endogenous opioid peptide.

Category
Peptide Inhibitors
Catalog number
BAT-009396
CAS number
83339-89-3
Molecular Formula
C49H70N12O11
Molecular Weight
1003.15
IUPAC Name
(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]hexanoyl]amino]-3-(4-hydroxyphenyl)propanoic acid
Synonyms
alpha-Neoendorphin (1-8); H-Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-OH; a-Neoendorphin (1-8)
Sequence
YGGFLRKY
InChI
InChI=1S/C49H70N12O11/c1-29(2)23-38(60-47(70)39(25-30-9-4-3-5-10-30)57-42(65)28-55-41(64)27-56-43(66)35(51)24-31-13-17-33(62)18-14-31)46(69)59-37(12-8-22-54-49(52)53)44(67)58-36(11-6-7-21-50)45(68)61-40(48(71)72)26-32-15-19-34(63)20-16-32/h3-5,9-10,13-20,29,35-40,62-63H,6-8,11-12,21-28,50-51H2,1-2H3,(H,55,64)(H,56,66)(H,57,65)(H,58,67)(H,59,69)(H,60,70)(H,61,68)(H,71,72)(H4,52,53,54)/t35-,36-,37-,38-,39-,40-/m0/s1
InChI Key
YKCYOSYZVIDJSI-UNHORJANSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCCN=C(N)N)C(=O)NC(CCCCN)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)O)NC(=O)C(CC2=CC=CC=C2)NC(=O)CNC(=O)CNC(=O)C(CC3=CC=C(C=C3)O)N
1. Synaptosomal membrane-bound form of endopeptidase-24.15 generates Leu-enkephalin from dynorphin1-8, alpha- and beta-neoendorphin, and Met-enkephalin from Met-enkephalin-Arg6-Gly7-Leu8
G R Acker, C Molineaux, M Orlowski J Neurochem. 1987 Jan;48(1):284-92. doi: 10.1111/j.1471-4159.1987.tb13160.x.
Brain contains a membrane-bound form of endopeptidase-24.15, a metalloendopeptidase predominantly associated with the soluble protein fraction of brain homogenates. Subcellular fractionation of the enzyme in rat brain showed that 20-25% of the total activity is associated with membrane fractions including synaptosomes. Solubilization of the enzyme from synaptosomal membranes required the use of detergents or treatment with trypsin. The specific activity of the enzyme in synaptosomal membranes measured with tertiary-butoxycarbonyl-Phe-Ala-Ala-Phe-p-aminobenzoate as substrate was higher than that of endopeptidase-24.11 ("enkephalinase"), a membrane-bound zinc-metalloendopeptidase believed to function in brain neuropeptide metabolism. Purified synaptosomal membranes converted efficiently dynorphin1-8, alpha- and beta-neoendorphin into leucine enkephalin and methionine-enkephalin-Arg6-Gly7-Leu8 into methionine enkephalin in the presence of captopril, bestatin, and N-[1-(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate, inhibitors of angiotensin converting enzyme (EC 3.4.15.1), aminopeptidase (EC 3.4.11.2), and membrane-bound metalloendopeptidase (EC 3.4.24.11), respectively. The conversion of enkephalin-containing peptides into enkephalins was virtually completely inhibited by N-[1-(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, a specific active-site-directed inhibitor of endopeptidase-24.15, indicating that this enzyme was responsible for the observed interconversions. The data indicate that synaptosomal membranes contain enzymes that can potentially generate and degrade both leucine- and methionine-enkephalin.
2. Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration
M A Werz, R L Macdonald J Pharmacol Exp Ther. 1985 Jul;234(1):49-56.
Opioid peptides decrease somatic calcium-dependent action potential duration of a subpopulation of mouse dorsal root ganglion (DRG) neurons grown in dissociated cell culture. Based on rank order of potency and naloxone sensitivity, both mu and delta opioid receptors were demonstrated on the somata of DRG neurons and were shown to have a heterogeneous distribution. The purpose of the present investigation was to determine the actions of dynorphin gene products, dynorphin A, dynorphin B, dynorphin A(1-8), dynorphin A(1-9), alpha-neoendorphin and beta-neoendorphin on DRG neuron somatic calcium-dependent action potentials and to compare the actions of dynorphin and neoendorphin peptides to the action of morphiceptin, a mu receptor-selective ligand, and Leu-enkephalin, a delta receptor-preferring ligand. We report that the dynorphin and neoendorphin peptides decreased DRG neuron somatic calcium-dependent action potential duration in a portion of DRG neurons, an action that was dose-dependent and was antagonized by naloxone. DRG neuron responses to the dynorphins and neoendorphins differed from responses to morphiceptin and Leu-enkephalin. First, many DRG neurons responded to dynorphin A but not to morphiceptin or Leu-enkephalin. Second, dynorphin A responses, unlike responses to morphiceptin or Leu-enkephalin, were present after intracellular injection of cesium, a potassium channel blocker. Dynorphin A effectiveness was decreased after deletions at the carboxy-terminus and Leu-enkephalin [dynorphin A(1-5)] was inactive at 10 microM. Thus, on DRG neurons in cell culture, dynorphins and neoendorphins act at opioid receptors distinct from mu and delta receptors, possibly kappa receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
3. Basal ganglia neuropeptides show abnormal processing associated with L-DOPA-induced dyskinesia
Heather Hulme, Elva Fridjonsdottir, Theodosia Vallianatou, Reza Shariatgorji, Anna Nilsson, Qin Li, Erwan Bezard, Per E Andrén NPJ Parkinsons Dis. 2022 Apr 13;8(1):41. doi: 10.1038/s41531-022-00299-7.
L-DOPA administration is the primary treatment for Parkinson's disease (PD) but long-term administration is usually accompanied by hyperkinetic side-effects called L-DOPA-induced dyskinesia (LID). Signaling neuropeptides of the basal ganglia are affected in LID and changes in the expression of neuropeptide precursors have been described, but the final products formed from these precursors have not been well defined and regionally mapped. We therefore used mass spectrometry imaging to visualize and quantify neuropeptides in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposed parkinsonian and LID Macaca mulatta brain samples. We found that dyskinesia severity correlated with the levels of some abnormally processed peptides - notably, des-tyrosine dynorphins, substance P (1-7), and substance P (1-9) - in multiple brain regions. Levels of the active neuropeptides; dynorphin B, dynorphin A (1-8), α-neoendorphin, substance P (1-11), and neurokinin A, in the globus pallidus and substantia nigra correlated with putaminal levels of L-DOPA. Our results demonstrate that the abundance of selected active neuropeptides is associated with L-DOPA concentrations in the putamen, emphasizing their sensitivity to L-DOPA. Additionally, levels of truncated neuropeptides (which generally exhibit reduced or altered receptor affinity) correlate with dyskinesia severity, particularly for peptides associated with the direct pathway (i.e., dynorphins and tachykinins). The increases in tone of the tachykinin, enkephalin, and dynorphin neuropeptides in LID result in abnormal processing of neuropeptides with different biological activity and may constitute a functional compensatory mechanism for balancing the increased L-DOPA levels across the whole basal ganglia.
Online Inquiry
Verification code
Inquiry Basket