1. Neuropeptide S Displays as a Key Neuromodulator in Olfactory Spatial Memory
Chen-Chen Cai, Yu-Feng Shao, Guang-Fu Cui, Yi-Ping Hou, Chao-Yu Cong, Jing Li, Hai-Lin Chen, Jun-Fan Xie, Can Wang, Chao-Yu Dong, Xiang-Pan Kong, Yan-Li Ren, Le Xin Chem Senses . 2020 Apr 17;45(3):195-202. doi: 10.1093/chemse/bjaa003.
Neuropeptide S (NPS) is an endogenous peptide recently recognized to be presented in the brainstem and believed to play an important role in maintaining memory. The deletion of NPS or NPS receptor (NPSR) in mice shows a deficit in memory formation. Our recent studies have demonstrated that central administration of NPS facilitates olfactory function and ameliorates olfactory spatial memory impairment induced by muscarinic cholinergic receptor antagonist and N-methyl-D-aspartate receptor antagonist. However, it remains to be determined if endogenous NPS is an indispensable neuromodulator in the control of the olfactory spatial memory. In this study, we examined the effects of NPSR peptidergic antagonist [D-Val5]NPS (10 and 20 nmol, intracerebroventricular) and nonpeptidergic antagonist SHA 68 (10 and 50 mg/kg, intraperitoneal) on the olfactory spatial memory using computer-assisted 4-hole-board olfactory spatial memory test in mice. Furthermore, immunofluorescence was employed to identify the distributions of c-Fos and NPSR immunoreactive (-ir) neurons in olfactory system and hippocampal formation known to closely relate to the olfactory spatial memory. [D-Val5]NPS dosing at 20 nmol and SHA 68 dosing at 50 mg/kg significantly decreased the number of visits to the 2 odorants interchanged spatially, switched odorants, in recall trial, and simultaneously reduced the percentage of Fos-ir in NPSR-ir neurons, which were densely distributed in the anterior olfactory nucleus, piriform cortex, subiculum, presubiculum, and parasubiculum. These findings suggest that endogenous NPS is a key neuromodulator in olfactory spatial memory.
2. Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor
Remo Guerrini, Laila Asth, Claudio Trapella, Elaine C Gavioli, Chiara Ruzza Neuropharmacology . 2015 Oct;97:1-6. doi: 10.1016/j.neuropharm.2015.05.002.
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder test. Moreover the putative role played by the endogenous NPS/NPSR system in regulating mice aggressiveness was investigating using mice lacking the NPSR receptor (NPSR(-/-)) and the NPSR selective antagonists [(t)Bu-D-Gly(5)]NPS and SHA 68. NPS (0.01-1 nmol, icv) reduced, in a dose dependent manner, both the time that resident mice spent attacking the intruder mice and their number of attacks, producing pharmacological effects similar to those elicited by the standard anti-aggressive drug valproate (300 mg/kg, ip). This NPS effect was evident in NPSR wild type (NPSR(+/+)) mice but completely disappeared in NPSR(-/-) mice. Moreover, NPSR(-/-) mice displayed a significantly higher time spent attacking than NPSR(+/+) mice. [(t)Bu-D-Gly(5)]NPS (10 nmol, icv) did not change the behavior of mice in the resident/intruder test but completely counteracted NPS effects. SHA 68 (50 mg/kg, ip) was inactive per se and against NPS. In conclusion, this study demonstrated that NPS produces anti-aggressive effects in mice through the selective activation of NPSR and that the endogenous NPS/NPSR system can exert a role in the control of aggressiveness levels under the present experimental conditions.
3. Neuropeptide S precursor knockout mice display memory and arousal deficits
Celia Garau, Hans-Christian Pape, Wei Si, Kay Jüngling, Stefan Schulz, Rainer K Reinscheid, Xiaobin Liu Eur J Neurosci . 2017 Jul;46(1):1689-1700. doi: 10.1111/ejn.13613.
Activation of neuropeptide S (NPS) signaling has been found to produce arousal, wakefulness, anxiolytic-like behaviors, and enhanced memory formation. In order to further study physiological functions of the NPS system, we generated NPS precursor knockout mice by homologous recombination in embryonic stem cells. NPS-/-mice were viable, fertile, and anatomically normal, when compared to their wild-type and heterozygous littermates. The total number of NPS neurons-although no longer synthesizing the peptide - was not affected by the knockout, as analyzed in NPS-/-/NPSEGFPdouble transgenic mice. Analysis of behavioral phenotypes revealed significant deficits in exploratory activity in NPS-/-mice. NPS precursor knockout mice displayed attenuated arousal in the hole board test, visible as reduced total nose pokes and number of holes inspected, that was not confounded by increased repetitive or stereotypic behavior. Importantly, long-term memory was significantly impaired in NPS-/-mice in the inhibitory avoidance paradigm. NPS precursor knockout mice displayed mildly increased anxiety-like behaviors in three different tests measuring responses to stress and novelty. Interestingly, heterozygous littermates often presented behavioral deficits similar to NPS-/-mice or displayed intermediate phenotype. These observations may suggest limited ligand availability in critical neural circuits. Overall, phenotypical changes in NPS-/-mice are similar to those observed in NPS receptor knockout mice and support earlier findings that suggest major functions of the NPS system in arousal, regulation of anxiety and stress, and memory formation.