1. Neuropeptide Y analog with selective antagonism of effects mediated by postjunctional Y1 receptors
A Tseng, A Inglis, L A Selbie, M Moriarty, E K Potter Eur J Pharmacol. 1994 Dec 27;271(2-3):265-71. doi: 10.1016/0014-2999(94)90783-8.
Neuropeptide, a 36 amino acid peptide, is one of the most ubiquitous neuropeptides in the nervous system. It is released during stimulation of sympathetic nerves and is implicated as an important neurotransmitter regulating cardiovascular activity. Administration of neuropeptide Y results in vasoconstriction and inhibition of neurotransmitter release. However, the absence of any effective inhibitors of neuropeptide Y action have precluded the examination of its possible role in hypertension. Here we describe a synthetic hexapeptide (BRC 672), corresponding to residues 22-27 of neuropeptide Y. Following the administration of BRC 672 (6.7 mumol/kg), neuropeptide Y-induced pressor responses were reduced by 32-48% in a dose-dependent fashion. The inhibition was specific for neuropeptide Y, as the pressor response to phenylephrine, an alpha-adrenoceptor agonist, was unchanged. It was selective for the postsynaptic (neuropeptide Y Y1 receptor-mediated) vasoconstrictor activity, because the presynaptic (neuropeptide Y Y2 receptor-mediated) cardiac vagal inhibition evoked by injection of neuropeptide Y to rats was not affected. The hexapeptide inhibited the neuropeptide Y-induced increase in cytosolic free Ca2+ in mammalian cells expressing the cloned human neuropeptide Y Y1 receptor. Injections of BRC 672 significantly reduced blood pressure in anaesthetised rats and in conscious spontaneously hypertensive rats. Resting arterial blood pressure decreased from 136 +/- 4 mm Hg to 122 +/- 3 mm Hg and remained depressed 2 h after the administration of the hexapeptide in anaesthetised rats. In spontaneously hypertensive rats blood pressure was decreased for up to 4 h.
2. Cloning and functional expression of a human Y4 subtype receptor for pancreatic polypeptide, neuropeptide Y, and peptide YY
J A Bard, M W Walker, T A Branchek, R L Weinshank J Biol Chem. 1995 Nov 10;270(45):26762-5. doi: 10.1074/jbc.270.45.26762.
The pancreatic polypeptide family includes pancreatic polypeptide (PP), neuropeptide Y (NPY), and peptide YY (PYY). Members of the PP family regulate numerous physiological processes, including appetite, gastrointestinal transit, anxiety, and blood pressure. Of the multiple Y-type receptors proposed for PP family members, only the Y1 subtype has been cloned previously. We now report the cloning of an additional Y-type receptor, designated Y4, by homology screening of a human placental genomic library with transmembrane (TM) probes derived from the rat Y1 gene. The Y4 genomic clone encodes a predicted protein of 375 amino acids that is most homologous to Y1 receptors from human, rat, and mouse (42% overall; 55% in TM). 125I-PYY binding to transiently expressed Y4 receptors was saturable (pKd = 9.89) and displaceable by human PP family derivatives: PP (pKi = 10.25) approximately PP2-36 (pKi = 10.06) > PYY (pKi = 9.06) approximately [Leu31,Pro34]NPY (pKi = 8.95) > NPY (pKi = 8.68) > PP13-36 (pKi = 7.13) > PP31-36 (pKi = 6.46) > PP31-36 free acid (pKi < 5). Human PP decreased [cAMP] and increased intracellular [Ca2+] in Y4-transfected LMTK- cells. Y4 mRNA was detected by reverse transcriptase-polymerase chain reaction in human brain, coronary artery, and ileum, suggesting potential roles for Y4 receptors in central nervous system, cardiovascular, and gastrointestinal function.
3. Neuropeptide Y (NPY) binding sites in rat brain labeled with 125I-Bolton-Hunter NPY: comparative potencies of various polypeptides on brain NPY binding and biological responses in the rat vas deferens
R S Chang, V J Lotti, T B Chen, D J Cerino, P J Kling Life Sci. 1985 Dec 2;37(22):2111-22. doi: 10.1016/0024-3205(85)90583-1.
The binding of biologically active 125I-Bolton-Hunter (BH)-NPY to rat brain membranes was saturable and reversible and regulated by inorganic cations and guanyl nucleotides consistent with other neurotransmitter receptor systems. The concentration of specific 125I-NPY binding differed in various brain regions, being highest in the hippocampus and lowest in the cerebellum. Scatchard analysis of 125I-NPY binding showed a single class of receptor sites with a Kd = 0.1 nM and Bmax of 3 pmole/g tissue in hippocampus. Peptide YY, porcine and human NPY inhibited the specific 125I-BH-NPY binding with IC50 values of 50-120 pM. In contrast, human NPY free acid and pancreatic polypeptides from human (HPP), rat (RPP) and avian (APP) sources were much weaker (IC50 greater than or equal to 300 nM). The rank order of potencies for NPY analogs and the inactivity of APP and HPP fragment (31-36) on brain binding appeared to correlate with their relative activities in inhibiting contractions of the field-stimulated rat vas deferens. However, PYY, HPP and RPP exhibited activity in the field-stimulated rat vas deferens indicative of a possible action upon sites distinct from the brain NPY binding site.