Neurotensin (1-8)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Neurotensin (1-8)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-015731
CAS number
80887-44-1
Molecular Formula
C46H71N13O14
Molecular Weight
1030.13
Neurotensin (1-8)
IUPAC Name
(4S)-5-[[(2S)-4-amino-1-[[(2S)-6-amino-1-[(2S)-2-[[(1S)-1-carboxy-4-(diaminomethylideneamino)butyl]carbamoyl]pyrrolidin-1-yl]-1-oxohexan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-[[(2S)-3-(4-hydroxyphenyl)-2-[[(2S)-4-methyl-2-[[(2S)-5-oxopyrrolidine-2-carbonyl]amino]pentanoyl]amino]propanoyl]amino]-5-oxopentanoic acid
Synonyms
Pglu-leu-tyr-glu-asn-lys-pro-arg; L-Pyr-L-Leu-L-Tyr-L-Glu-L-Asn-L-Lys-L-Pro-L-Arg; 5-oxo-L-prolyl-L-leucyl-L-tyrosyl-L-alpha-glutamyl-L-asparaginyl-L-lysyl-L-prolyl-L-arginine
Sequence
XLYENKPR
Storage
Store at -20°C
InChI
InChI=1S/C46H71N13O14/c1-24(2)21-31(56-38(65)27-14-16-36(62)52-27)40(67)57-32(22-25-10-12-26(60)13-11-25)41(68)53-28(15-17-37(63)64)39(66)58-33(23-35(48)61)42(69)54-29(7-3-4-18-47)44(71)59-20-6-9-34(59)43(70)55-30(45(72)73)8-5-19-51-46(49)50/h10-13,24,27-34,60H,3-9,14-23,47H2,1-2H3,(H2,48,61)(H,52,62)(H,53,68)(H,54,69)(H,55,70)(H,56,65)(H,57,67)(H,58,66)(H,63,64)(H,72,73)(H4,49,50,51)/t27-,28-,29-,30-,31-,32-,33-,34-/m0/s1
InChI Key
ZJPYPJIAUOEHJV-LGYYRGKSSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CCC(=O)O)C(=O)NC(CC(=O)N)C(=O)NC(CCCCN)C(=O)N2CCCC2C(=O)NC(CCCN=C(N)N)C(=O)O)NC(=O)C3CCC(=O)N3
1. Catabolism of neurotensin in the epithelial layer of porcine small intestine
C Shaw, R Göke, N W Bunnett, J M Conlon Biochim Biophys Acta. 1987 Apr 16;924(1):167-74. doi: 10.1016/0304-4165(87)90084-5.
The mammalian small intestine is both a source and a site of degradation of neurotensin. Metabolites produced by incubation of the peptide with dispersed enterocytes from porcine small intestine were isolated by high-performance liquid chromatography and identified by amino-acid analysis. The principal sites of cleavage were at the Tyr-11-Ile-12 bond, generating neurotensin-(1-11), and at the Pro-10-Tyr-11 bond, generating neurotensin-(1-10). The corresponding COOH-terminal fragments, neurotensin-(11-13) and -(12-13) were metabolized further. Formation of neurotensin-(1-11) and -(1-10) was completely inhibited by phosphoramidon (Ki = 6 nM), an inhibitor of endopeptidase 24.11, but not by captopril, an inhibitor of peptidyl dipeptidase A. Incubation of neurotensin with purified endopeptidase 24.11 from pig stomach also resulted in cleavage of the Tyr-11-Ile-12 and Pro-10-Tyr-11 bonds. A minor pathway of cell-surface-mediated degradation was the phosphoramidon-insensitive cleavage of the Tyr-3-Glu-4 bond, generating neurotensin-(1-3) and neurotensin-(4-13). No evidence for specific binding sites (putative receptors) for neurotensin was found either on the intact enterocyte or on vesicles prepared from the basolateral membranes of the cells. Neurotensin-(1-8), the major circulating metabolite, was not formed when neurotensin(1-13) was incubated with cells, but represented a major metabolite (together with neurotensin-(1-10] when neurotensin-(1-11) was used as substrate. The study has shown that degradation of neurotensin in the epithelial layer of the small intestine is mediated principally through the action of endopeptidase 24.11, but this enzyme is probably not responsible for the production of the neurotensin fragments detected in the circulation.
2. Neurotensin receptors regulate transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner
Terry W Moody, Lingaku Lee, Irene Ramos-Alvarez, Robert T Jensen Eur J Pharmacol. 2019 Dec 15;865:172735. doi: 10.1016/j.ejphar.2019.172735. Epub 2019 Oct 12.
Neurotensin is a 13 amino acid peptide which is present in many lung cancer cell lines. Neurotensin binds with high affinity to the neurotensin receptor 1, and functions as an autocrine growth factor in lung cancer cells. Neurotensin increases tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and the neurotensin receptor 1 antagonist SR48692 blocks the transactivation of the EGFR. Here the effects of reactive oxygen species on the transactivation of the EGFR and HER2 were investigated. Using non-small cell lung cancer (NSCLC) cell lines, neurotensin receptor 1 mRNA and protein were present. Using NCI-H838 cells, neurotensin or neurotensin8-13 but not neurotensin1-8 increased EGFR, ERK and HER2 tyrosine phosphorylation which was blocked by SR48692. Neurotensin addition to NCI-H838 cells increased significantly reactive oxygen species which was inhibited by SR48692, Tiron (superoxide scavenger) and diphenylene iodonium (DPI inhibits the ability of NADPH oxidase and dual oxidase enzymes to produce reactive oxygen species). Tiron or DPI impaired the ability of neurotensin to increase EGFR, ERK and HER2 tyrosine phosphorylation. Neurotensin stimulated NSCLC cellular proliferation whereas the growth was inhibited by SR48692, DPI or lapatinib (lapatinib is tyrosine kinase inhibitor of the EGFR and HER2). Lapatinib inhibited the ability of the neurotensin receptor 1 to transactivate the EGFR and HER2. The results indicate that neurotensin receptor 1 regulates the transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner.
3. Neurotensin depolarizes globus pallidus neurons in rats via neurotensin type-1 receptor
L Chen, K K L Yung, W H Yung Neuroscience. 2004;125(4):853-9. doi: 10.1016/j.neuroscience.2004.02.031.
The globus pallidus is a major component in the indirect pathway of the basal ganglia. There is evidence that neurotensin receptors exist in this nucleus. To determine the electrophysiological effects of neurotensin on pallidal neurons, whole-cell patch-clamp recordings were performed in the acutely prepared brain slices. Under current-clamp recordings, neurotensin at 1 microM depolarized pallidal neurons. Voltage-clamp recordings also showed an inward current induced by neurotensin. The depolarizing effect of neurotensin could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). Both SR 142948A, a non-selective neurotensin receptor type-1 and type-2 antagonist, and SR 48692, a selective type-1 receptor antagonist, blocked the depolarizing effect of neurotensin, and which themselves had no effect on membrane potential. Thus, neurotensin type-1 receptors appear to mediate the effect of neurotensin. The depolarization evoked by neurotensin persisted in the presence of tetrodotoxin, ionotropic and metabotropic glutamate and GABA receptor antagonists, indicating that neurotensin excited the pallidal neurons by activating the receptor expressed on the neurons recorded. Current-voltage relationship revealed that both the suppression of a potassium conductance and the activation of a cationic conductance are involved in the neurotensin-induced depolarization. Based on the action of neurotensin in the globus pallidus we hypothesize that alterations of the striatopallidal neurotensin system contribute to symptoms of basal ganglia motor disorders.
Online Inquiry
Verification code
Inquiry Basket