O-2,6-Dichlorobenzyl-D-tyrosine
Need Assistance?
  • US & Canada:
    +
  • UK: +

O-2,6-Dichlorobenzyl-D-tyrosine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
D-Amino Acids
Catalog number
BAT-000466
CAS number
877932-39-3
Molecular Formula
C16H15Cl2NO3
Molecular Weight
340.30
IUPAC Name
(2R)-2-amino-3-[4-[(2,6-dichlorophenyl)methoxy]phenyl]propanoic acid
Synonyms
D-Tyr(2,6-diClBzl)-OH; (R)-2-Amino-3-(4-((2,6-dichlorobenzyl)oxy)phenyl)propanoic acid
Appearance
White powder
Melting Point
171-174 °C
Storage
Store at 2-8 °C
InChI
InChI=1S/C16H15Cl2NO3/c17-13-2-1-3-14(18)12(13)9-22-11-6-4-10(5-7-11)8-15(19)16(20)21/h1-7,15H,8-9,19H2,(H,20,21)/t15-/m1/s1
InChI Key
FTZFICPDLOOUKO-OAHLLOKOSA-N
Canonical SMILES
C1=CC(=C(C(=C1)Cl)COC2=CC=C(C=C2)CC(C(=O)O)N)Cl
1. The oxygen therapy
A Corsonello, C Pedone, S Scarlata, A Zito, I Laino, R Antonelli-Incalzi Curr Med Chem. 2013;20(9):1103-26. doi: 10.2174/0929867311320090002.
Oxygen (O(2)) is a vital element. Shortage of O(2) results in deranged metabolism and important changes in vascular tone with opposite effects on the systemic and pulmonary circulation. During hypoxemia, oxidative stress exposes the organism to a sort of accelerated senescence as well as to several acute untoward effects. Thus, hypoxemia should be promptly recognized and treated, hopefully by measures tailored to the pathophysiological mechanisms underlying hypoxemia. However, O(2) therapy remains the most common therapy of hypoxemia, but it must be carefully tailored to relieve hypoxemia without provoking hyperoxia or hypercarbia. Then, the individual response to O(2) as well as changing needs of O(2) during sleep or exercise must be evaluated to provide the best O(2) therapy. Hyperoxia, the effect of overcorrection of hypoxia, can dramatically impact the health status and threaten the survival of the newborn and, through different mechanisms and effects, the adult. A thorough knowledge of the pathophysiological bases of hypoxemia and O(2) storage and delivery devices is then mandatory to administer O(2) therapy guaranteeing for optimal correction of hypoxemia and minimizing the risk of hyperoxia. Consistent with this aim also is a careful scrutiny of instruments and procedures for monitoring the individual response to O(2) over time. Thus, at variance from classical pharmacological therapy, performing O(2) therapy requires a vast array of clinical and technical competences. The optimal integration of these competences is needed to optimize O(2) therapy on individual bases.
2. Hydrogen peroxide metabolism and functions in plants
Nicholas Smirnoff, Dominique Arnaud New Phytol. 2019 Feb;221(3):1197-1214. doi: 10.1111/nph.15488. Epub 2018 Oct 13.
Contents Summary 1197 I. Introduction 1198 II. Measurement and imaging of H2 O2 1198 III. H2 O2 and O2·- toxicity 1199 IV. Production of H2 O2 : enzymes and subcellular locations 1200 V. H2 O2 transport 1205 VI. Control of H2 O2 concentration: how and where? 1205 VII. Metabolic functions of H2 O2 1207 VIII. H2 O2 signalling 1207 IX. Where next? 1209 Acknowledgements 1209 References 1209 SUMMARY: Hydrogen peroxide (H2 O2 ) is produced, via superoxide and superoxide dismutase, by electron transport in chloroplasts and mitochondria, plasma membrane NADPH oxidases, peroxisomal oxidases, type III peroxidases and other apoplastic oxidases. Intracellular transport is facilitated by aquaporins and H2 O2 is removed by catalase, peroxiredoxin, glutathione peroxidase-like enzymes and ascorbate peroxidase, all of which have cell compartment-specific isoforms. Apoplastic H2 O2 influences cell expansion, development and defence by its involvement in type III peroxidase-mediated polymer cross-linking, lignification and, possibly, cell expansion via H2 O2 -derived hydroxyl radicals. Excess H2 O2 triggers chloroplast and peroxisome autophagy and programmed cell death. The role of H2 O2 in signalling, for example during acclimation to stress and pathogen defence, has received much attention, but the signal transduction mechanisms are poorly defined. H2 O2 oxidizes specific cysteine residues of target proteins to the sulfenic acid form and, similar to other organisms, this modification could initiate thiol-based redox relays and modify target enzymes, receptor kinases and transcription factors. Quantification of the sources and sinks of H2 O2 is being improved by the spatial and temporal resolution of genetically encoded H2 O2 sensors, such as HyPer and roGFP2-Orp1. These H2 O2 sensors, combined with the detection of specific proteins modified by H2 O2 , will allow a deeper understanding of its signalling roles.
3. Monitoring and control of the release of soluble O2 from H2 O2 inside porous enzyme carrier for O2 supply to an immobilized d-amino acid oxidase
Sabine Schelch, Juan M Bolivar, Bernd Nidetzky Biotechnol Bioeng. 2022 Sep;119(9):2374-2387. doi: 10.1002/bit.28130. Epub 2022 May 16.
While O2 substrate for bio-transformations in bulk liquid is routinely provided from entrained air or O2 gas, tailored solutions of O2 supply are required when the bio-catalysis happens spatially confined to the microstructure of a solid support. Release of soluble O2 from H2 O2 by catalase is promising, but spatiotemporal control of the process is challenging to achieve. Here, we show monitoring and control by optical sensing within a porous carrier of the soluble O2 formed by an immobilized catalase upon feeding of H2 O2 . The internally released O2 is used to drive the reaction of d-amino acid oxidase (oxidation of d-methionine) that is co-immobilized with the catalase in the same carrier. The H2 O2 is supplied in portions at properly timed intervals, or continuously at controlled flow rate, to balance the O2 production and consumption inside the carrier so as to maintain the internal O2 concentration in the range of 100-500 µM. Thus, enzyme inactivation by excess H2 O2 is prevented and gas formation from the released O2 is avoided at the same time. The reaction rate of the co-immobilized enzyme preparation is shown to depend linearly on the internal O2 concentration up to the air-saturated level. Conversions at a 200 ml scale using varied H2 O2 feed rate (0.04-0.18 mmol/min) give the equivalent production rate from d-methionine (200 mM) and achieve rate enhancement by ~1.55-fold compared to the same oxidase reaction under bubble aeration. Collectively, these results show an integrated strategy of biomolecular engineering for tightly controlled supply of O2 substrate from H2 O2 into carrier-immobilized enzymes. By addressing limitations of O2 supply via gas-liquid transfer, especially at the microscale, this can be generally useful to develop specialized process strategies for O2 -dependent biocatalytic reactions.
Online Inquiry
Verification code
Inquiry Basket