O-Benzyl-L-threonine benzyl ester hydrochloride
Need Assistance?
  • US & Canada:
    +
  • UK: +

O-Benzyl-L-threonine benzyl ester hydrochloride

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
L-Amino Acids
Catalog number
BAT-002167
CAS number
67580-86-3
Molecular Formula
C20H23NO7·HCl
Molecular Weight
425.50
IUPAC Name
benzyl (2S,3R)-2-amino-3-phenylmethoxybutanoate;hydrochloride
Synonyms
L-Thr(Bzl)-OBzl HCl
Appearance
White powder
Purity
≥ 98% (HPLC)
Melting Point
107-112°C
Storage
Store at 2-8 °C
InChI
InChI=1S/C18H21NO3.ClH/c1-14(21-12-15-8-4-2-5-9-15)17(19)18(20)22-13-16-10-6-3-7-11-16;/h2-11,14,17H,12-13,19H2,1H3;1H/t14-,17+;/m1./s1
InChI Key
ORVAXKPZMYPUKE-CVLQQERVSA-N
Canonical SMILES
CC(C(C(=O)OCC1=CC=CC=C1)N)OCC2=CC=CC=C2.Cl
1. Charge-reversal nanoparticles: novel targeted drug delivery carriers
Xinli Chen, Lisha Liu, Chen Jiang Acta Pharm Sin B. 2016 Jul;6(4):261-7. doi: 10.1016/j.apsb.2016.05.011. Epub 2016 Jun 8.
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).
2. Reactions of O-acyl-L-serines with tryptophanase, tyrosine phenol-lyase, and tryptophan synthase
R S Phillips Arch Biochem Biophys. 1987 Jul;256(1):302-10. doi: 10.1016/0003-9861(87)90450-4.
The reactions of tryptophanase, tyrosine phenol-lyase, and tryptophan synthase with a new class of substrates, the O-acyl-L-serines, have been examined. A method for preparation of O-benzoyl-L-serine in high yield from tert.-butyloxycarbonyl (tBoc)-L-serine has been developed. Reaction of the cesium salt of tBoc-L-serine with benzyl bromide in dimethylformamide gives tBoc-L-serine benzyl ester in excellent yield. Acylation with benzoyl chloride and triethylamine in acetonitrile followed by hydrogenolysis with 10% palladium on carbon in trifluoroacetic acid gives O-benzoyl-L-serine, isolated as the hydrochloride salt. O-Benzoyl-L-serine is a good substrate for beta-elimination or beta-substitution reactions catalyzed by both tryptophanase and tyrosine phenol-lyase, with Vmax values 5- to 6-fold those of the physiological substrates and comparable to that of S-(o-nitrophenyl)-L-cysteine. Unexpectedly, O-acetyl-L-serine is a very poor substrate for these enzymes, with Vmax values about 5% of those of the physiological substrates. Both O-acyl-L-serines are poor substrates for tryptophan synthase, measured either by the synthesis of 5-fluoro-L-tryptophan from 5-fluoroindole and L-serine catalyzed by the intact alpha 2 beta 2 subunit or by the beta-elimination reaction catalyzed by the isolated beta 2 subunit. With all three enzymes, the elimination of benzoate appears to be irreversible. These results suggest that the binding energy from the aromatic ring of O-benzoyl-L-serine is used to lower the transition-state barrier for the elimination reactions catalyzed by tryptophanase and tyrosine phenol-lyase. Our findings support the suggestion (M. N. Kazarinoff and E. E. Snell (1980) J. Biol. Chem. 255, 6228-6233) that tryptophanase undergoes a conformational change during catalysis and suggest that tyrosine phenol-lyase also may undergo a conformational change during catalysis.
3. Partial purification, and some properties and reactivities of cetraxate benzyl ester hydrochloride-hydrolyzing enzyme
H Kuroda, A Miyadera, A Imura, A Suzuki Chem Pharm Bull (Tokyo). 1989 Nov;37(11):2929-32. doi: 10.1248/cpb.37.2929.
Debenzylating enzyme from Aspergillus niger enzyme (commercial crude cellulase) catalyzes the hydrolysis of cetraxate benzyl ester hydrochloride (2), a precursor of the antiulcer agent (1). The enzyme was highly purified by three kinds of chromatographies (hydrophobic, ion exchange, gel filtration) with a recovery of 36%. The content of the debenzylating enzyme was about 0.1% in the crude cellulase, but the enzyme showed no cellulase activity. The purified enzyme was inactivated by Hg2+, and diisopropyl phosphorofluoridate (DFP). It was a monomer with a molecular weight of about 35,000, and its isoelectric point was estimated to be 5.3. It showed a debenzylating activity for the phenylpropionic acid benzyl ester moiety of various benzyl ester derivatives, and the benzyl ester of phenylalanine or that of tyrosine was also well hydrolyzed.
Online Inquiry
Verification code
Inquiry Basket