1. Isopenicillin N synthase binds δ-(L-α-aminoadipoyl)-L-cysteinyl-D-thia-allo-isoleucine through both sulfur atoms
Ian J Clifton, Wei Ge, Robert M Adlington, Jack E Baldwin, Peter J Rutledge Chembiochem. 2011 Aug 16;12(12):1881-5. doi: 10.1002/cbic.201100149. Epub 2011 Jun 15.
Isopenicillin N synthase (IPNS) catalyses the synthesis of isopenicillin N (IPN), the biosynthetic precursor to penicillin and cephalosporin antibiotics. IPNS is a non-heme iron(II) oxidase that mediates the oxidative cyclisation of the tripeptide δ-L-α-aminoadipoyl-L-cysteinyl-D-valine (ACV) to IPN with a concomitant reduction of molecular oxygen to water. Solution-phase incubation experiments have shown that, although IPNS can turn over analogues with a diverse range of hydrocarbon side chains in the third (valinyl) position of its substrate, the enzyme is much less tolerant of polar residues in this position. Thus, although IPNS converts δ-L-α-aminoadipoyl-L-cysteinyl-D-isoleucine (ACI) and AC-D-allo-isoleucine (ACaI) to penam products, the isosteric sulfur-containing peptides AC-D-thiaisoleucine (ACtI) and AC-D-thia-allo-isoleucine (ACtaI) are not turned over. To determine why these peptides are not substrates, we crystallized ACtaI with IPNS. We report the synthesis of ACtaI and the crystal structure of the IPNS:Fe(II) :ACtaI complex to 1.79 Å resolution. This structure reveals direct ligation of the thioether side chain to iron: the sulfide sulfur sits 2.66 Å from the metal, squarely in the oxygen binding site. This result articulates a structural basis for the failure of IPNS to turn over these substrates.
2. The interaction of isopenicillin N synthase with homologated substrate analogues δ-(L-α-aminoadipoyl)-L-homocysteinyl-D-Xaa characterised by protein crystallography
Adam Daruzzaman, Ian J Clifton, Robert M Adlington, Jack E Baldwin, Peter J Rutledge Chembiochem. 2013 Mar 18;14(5):599-606. doi: 10.1002/cbic.201200728. Epub 2013 Mar 6.
Isopenicillin N synthase (IPNS) converts the linear tripeptide δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine (ACV) into bicyclic isopenicillin N (IPN) in the central step in the biosynthesis of penicillin and cephalosporin antibiotics. Solution-phase incubation experiments have shown that IPNS turns over analogues with a diverse range of side chains in the third (valinyl) position of the substrate, but copes less well with changes in the second (cysteinyl) residue. IPNS thus converts the homologated tripeptides δ-(L-α-aminoadipoyl)-L-homocysteinyl-D-valine (AhCV) and δ-(L-α-aminoadipoyl)-L-homocysteinyl-D-allylglycine (AhCaG) into monocyclic hydroxy-lactam products; this suggests that the additional methylene unit in these substrates induces conformational changes that preclude second ring closure after initial lactam formation. To investigate this and solution-phase results with other tripeptides δ-(L-α-aminoadipoyl)-L-homocysteinyl-D-Xaa, we have crystallised AhCV and δ-(L-α-aminoadipoyl)-L-homocysteinyl-D-S-methylcysteine (AhCmC) with IPNS and solved crystal structures for the resulting complexes. The IPNS:Fe(II):AhCV complex shows diffuse electron density for several regions of the substrate, revealing considerable conformational freedom within the active site. The substrate is more clearly resolved in the IPNS:Fe(II):AhCmC complex, by virtue of thioether coordination to iron. AhCmC occupies two distinct conformations, both distorted relative to the natural substrate ACV, in order to accommodate the extra methylene group in the second residue. Attempts to turn these substrates over within crystalline IPNS using hyperbaric oxygenation give rise to product mixtures.
3. Structural studies on the reaction of isopenicillin N synthase with the truncated substrate analogues delta-(L-alpha-aminoadipoyl)-L-cysteinyl-glycine and delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alanine
Alexandra J Long, Ian J Clifton, Peter L Roach, Jack E Baldwin, Peter J Rutledge, Christopher J Schofield Biochemistry. 2005 May 3;44(17):6619-28. doi: 10.1021/bi047478q.
Isopenicillin N synthase (IPNS), a non-heme iron(II)-dependent oxidase, catalyzes conversion of the tripeptide delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to bicyclic isopenicillin N (IPN), concomitant with the reduction of dioxygen to two molecules of water. Incubation of the "truncated"substrate analogues delta-(l-alpha-aminoadipoyl)-l-cysteinyl-glycine (ACG) and delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-alanine (ACA) with IPNS has previously been shown to afford acyclic products, in which the substrate cysteinyl residue has undergone a two-electron oxidation. We report X-ray crystal structures for the anaerobic IPNS/Fe(II)/ACG and IPNS/Fe(II)/ACA complexes, both in the absence and presence of the dioxygen analogue nitric oxide. The overall protein structures are very similar to those of the corresponding IPNS/Fe(II)/ACV complexes; however, significant differences are apparent in the vicinity of the active site iron. The structure of the IPNS/Fe(II)/ACG complex reveals that the C-terminal carboxylate of this substrate is oriented toward the active site iron atom, apparently hydrogen-bonded to an additional water ligand at the metal; this is a different binding mode to that observed in the IPNS/Fe(II)/ACV complex. ACA binds to the metal in a manner that is intermediate between those observed for ACV and ACG. The addition of NO to these complexes initiates conformational changes such that both the IPNS/Fe(II)/ACG/NO and IPNS/Fe(II)/ACA/NO structures closely resemble the IPNS/Fe(II)/ACV/NO complex. These results further demonstrate the feasibility of metal-centered rearrangements in catalysis by non-heme iron enzymes and provide insight into the delicate balance between hydrophilic-hydrophobic interactions and steric effects in the IPNS active site.