O-tert-Butyl-L-threonine allyl ester hydrochloride
Need Assistance?
  • US & Canada:
    +
  • UK: +

O-tert-Butyl-L-threonine allyl ester hydrochloride

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
L-Amino Acids
Catalog number
BAT-004179
CAS number
218938-63-7
Molecular Formula
C11H21NO3·HCl
Molecular Weight
251.76
O-tert-Butyl-L-threonine allyl ester hydrochloride
IUPAC Name
prop-2-enyl (2S,3R)-2-amino-3-[(2-methylpropan-2-yl)oxy]butanoate;hydrochloride
Synonyms
L-Thr(tBu)-OAll HCl; (2S,3R)-Allyl 2-Amino-3-(Tert-Butoxy)Butanoate Hydrochloride
Appearance
White crystalline powder
Purity
≥ 98% (TLC)
Storage
Store at 2-8 °C
InChI
InChI=1S/C11H21NO3.ClH/c1-6-7-14-10(13)9(12)8(2)15-11(3,4)5;/h6,8-9H,1,7,12H2,2-5H3;1H/t8-,9+;/m1./s1
InChI Key
LEQICVPMIULGJK-RJUBDTSPSA-N
Canonical SMILES
CC(C(C(=O)OCC=C)N)OC(C)(C)C.Cl
1. Ultrasound-assisted catalyst-free phenol-yne reaction for the synthesis of new water-soluble chitosan derivatives and their nanoparticles with enhanced antibacterial properties
Andreii S Kritchenkov, Anton R Egorov, Olga V Volkova, Ilya S Kritchenkov, Aleh V Kurliuk, Tatsiana V Shakola, Victor N Khrustalev Int J Biol Macromol. 2019 Oct 15;139:103-113. doi: 10.1016/j.ijbiomac.2019.07.203. Epub 2019 Jul 30.
This work describes ultrasound-assisted phenol-yne addition of p-hydroxybenzaldehyde and propargylic ester of betaine hydrochloride giving only 2-((3-(4-formylphenoxy)allyl)oxy)-N,N,N-trimethyl-2-oxoethan-1-aminium chloride as a product at 100kHz 300W in water. The ultrasonic assisted phenol-yne addition was enhanced to chitosan chemistry. Phenolic chitosan derivatives were obtained by treatment of chitosan with o-, m- or p-hydroxybenzaldehyde followed by reduction of the formed CN bound by NaBH4. The phenolic chitosan derivatives (phenolic component) were involved in ultrasound-mediated reaction with propargylic ester of betaine hydrochloride (yne component). The reaction led to betaine chitosan derivatives in different degree of substitution as o-, m- and p-isomers. The phenolic and betaine derivatives were tested as antibacterial agents against E. coli in comparison with reference antibiotic Tetracycline. Betaine derivatives showed high antibacterial activity. The most effective polymer was p-isomer of high substituted betaine derivative and its activity was more than 2 times higher than the activity of Tetracycline. The nanoparticles based on this polymer were obtained by ionic gelation method. They had 2Rh 126nm, ξ-potential 20mV and were more effective than the corresponding chitosan derivative.
2. Charge-reversal nanoparticles: novel targeted drug delivery carriers
Xinli Chen, Lisha Liu, Chen Jiang Acta Pharm Sin B. 2016 Jul;6(4):261-7. doi: 10.1016/j.apsb.2016.05.011. Epub 2016 Jun 8.
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).
3. Effects of allyl isothiocyanate from horseradish on several experimental gastric lesions in rats
Hisashi Matsuda, Momotaro Ochi, Akifumi Nagatomo, Masayuki Yoshikawa Eur J Pharmacol. 2007 Apr 30;561(1-3):172-81. doi: 10.1016/j.ejphar.2006.12.040. Epub 2007 Jan 27.
Allyl isothiocyanate is well known to be a principal pungent constituent of horseradish and an agonist for transient receptor potential (TRP) A1. Ally isothiocyanate markedly inhibited the formation of gastric lesions induced by ethanol (1.5 ml/rat, p.o.), 0.6 M HCl (1.5 ml/rat, p.o.), 1% ammonia (1.5 ml/rat, p.o.), and aspirin (150 mg/kg, p.o.) (ED(50)=1.6, 2.2, 1.7, ca. 6.5 mg/kg, p.o.). It also significantly inhibited the formation of gastric lesions induced by indomethacin (20 mg/kg, p.o.), though the inhibition was ca. 60% at a high dose (40 mg/kg, p.o.). Furthermore, several synthetic isothiocyanate compounds also significantly inhibited ethanol and indomethacin-induced gastric lesions. Whereas, TRPV1 agonists, capsaicin and piperine, inhibited gastric lesions induced by ethanol, 1% ammonia, and aspirin, but had less of an effect on 0.6 M HCl-induced gastric lesions. With regard to mode of action, the protective effects of ally isothiocyanate on ethanol-induced gastric lesions were attenuated by pretreatment with indomethacin, but not with N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME), or ruthenium red. Pretreatment with indomethacin reduced the protective effects of piperine, and L-NAME reduced the effects of capsaicin and omeprazole. Furthermore, ruthenium red reduced the effects of capsaicin, piperine, and omeprazole. These findings suggest that endogenous prostaglandins play an important role in the protective effect of allyl isothiocyanate in ethanol-induced gastric lesions different from capsaicin, piperine, and omeprazole.
Online Inquiry
Verification code
Inquiry Basket