1. Localization of orexin B and orexin-2 receptor in the rat epididymis
Nicola Mirabella, Chika Miyoshi, Caterina Squillacioti, Anna Costagliola, Alfredo Vittoria, Masashi Yanagisawa, Giovanna Liguori, Valeria De Pasquale, Simona Tafuri Acta Histochem . 2018 Apr;120(3):292-297. doi: 10.1016/j.acthis.2018.02.011.
The peptides orexin A (OXA) and orexin B (OXB) derived from the proteolytic cleavage of a common precursor molecule, prepro-orexin, were originally described in the rat hypothalamus. Successively, they have been found in many other brain regions as well as in peripheral organs of mammals and other less evolved animals. The widespread localization of orexins accounts for the multiple activities that they exert in the body, including the regulation of energy homeostasis, feeding, metabolism, sleep and arousal, stress, addiction, and cardiovascular and endocrine functions. Both OXA and OXB peptides bind to two G-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R) receptor, though with different binding affinity. Altered expression/activity of orexins and their receptors has been associated with a large number of human diseases. Though at present evidence highlighted a role for orexins and cognate receptors in mammalian reproduction, their central and/or local effects on gonadal functions remain poorly known. Here, we investigated the localization of OXB and OX2R in the rat epididymis. Immunohistochemical staining of sections from caput, corpus and cauda segments of the organ showed intense signals for both OXB and OX2R in the principal cells of the lining epithelium, while no staining was detected in the other cell types. Negative results were obtained from immunohistochemical analysis of hypothalamic and testicular tissues from OX2R knock-out mice (OX2R-/-) and OX1R/OX2R double knock-out (OX1R-/-; OX2R-/-) mice, thus demonstrating the specificity of the rabbit polyclonal anti-OX2R antibody used in our study. On contrary, the same antibody clearly showed the presence of OX2R in sections from hypothalamus and testis of normal mice and rats which are well known to express the receptor. Thus, our results provide the first definite evidence for the immunohistochemical localization of OXB and OX2R in the principal cells of rat epididymis.
2. Neuropeptides and obesity
B Beck Nutrition . 2000 Oct;16(10):916-23. doi: 10.1016/s0899-9007(00)00410-x.
This review focuses on the expression, content, and release of neuropeptides and on their role in the development of obesity in animal models with single-gene mutations. The balance between neuropeptides that contribute to the control of feeding behavior is profoundly and variously altered in these models, supporting the concept of the existence of several types of obesity. The hypothalamic neuropeptide Y (NPY) and the pro-opiomelanocortin (POMC) systems are the networks most studied in relation to energy intake. Both receive information about the nutritional status and the level of energy storage through insulin and leptin signaling mediated by specific receptors located on POMC and NPY neurons present predominantly in the arcuate nucleus (ARC). When leptin signaling is defective, through a defect in either the receptor (Zucker fa/fa rat, cp/cp rat, and db/db mouse) or in the peptide itself (ob/ob mouse), the NPY system is upregulated as shown by mRNA overexpression and increased peptide release, whereas the content and/or release of some inhibitory peptides (neurotensin, cholecystokinin) are diminished. For the POMC system, there is a complex interaction between the tonic inhibition of food intake exerted by alpha-melanocyte-stimulating hormone (alpha-MSH) and the Agouti-related protein at the level of the type 4 melanocortin receptor. The latter peptide is coexpressed with NPY in the ARC. Corticotropin-releasing factor (CRF) is the link between food intake and environmental factors. It not only inhibits food intake and prevents weight gain, likely through hypothalamic effects, but also activates the hypothalamo-pituitary axis and therefore contributes to energy storage in adipose tissue. The factors that prod the CRF system toward the hypothalamic or hypothalamo-pituitary axis system remain to be more clearly defined (comodulators, connections between limbic system and ARC, cellular location, and type of receptors, etc. ). The pathways used by all of these neuromodulators include numerous brain areas, but some interest has returned to the classic ones such as the ventromedial and lateral hypothalamic areas because of the recent discovery of some peptides (orexins and melanin-concentrating hormone for the lateral hypothalamus) and receptors (CRF type 2 in the ventromedial hypothalamus). All of these pathways are redundant and function in a coordinated manner and sometimes by the novel expression of a peptide in an unusual area. The importance of such a phenomenon in obesity remains to be determined. Even if single-gene mutations are exceptions in human obesity, the study of genetic animal models of obesity has greatly contributed to the understanding of the regulation of feeding behavior and will allow researchers to develop new drug treatments for obesity that have to be associated with drastic changes in lifestyle (feeding, work habits, and physical activity) for a complete efficiency.
3. Orexin A suppresses the growth of rat C6 glioma cells via a caspase-dependent mechanism
Kaja Biegańska, Olaf Jöhren, Paulina Sokołowska, Jolanta B Zawilska J Mol Neurosci . 2012 Nov;48(3):706-12. doi: 10.1007/s12031-012-9799-0.
Orexin A and orexin B (also known as hypocretins) are closely related peptides synthesized by hypothalamic neurons. They orchestrate diverse central and peripheral processes by stimulation of two G-protein coupled receptors, OX(1)R and OX(2)R. Recent studies have demonstrated the ability of orexins to promote a robust apoptosis in different cancer cells in culture and a potent growth reduction of human colon tumors in mice xenografts. Here we report effects of orexins on survival of rat C6 glioma cells, an experimental model for studies on glioblastoma multiforme (GBM). Quantitative real-time PCR demonstrated the expression of both types of orexin receptors in C6 cells. Orexin A and orexin B did not affect rat C6 glioma cell proliferation as assessed by [(3)H]thymidine incorporation assay. Incubation of the cells with orexin A (0.001-1 μM) resulted in a marked decrease of cell viability. The observed effect was caspase-dependent, as it was blocked by Z-VAD-fmk, a pan caspase inhibitor. In addition to that, a parallel increase in caspase-3 activity was observed. It is suggested that stimulation of orexin receptors induces death of rat C6 glioma cells through activation of caspase pathway.