Palustrin-RA peptide precursor
Need Assistance?
  • US & Canada:
    +
  • UK: +

Palustrin-RA peptide precursor

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Palustrin-RA peptide precursor is an antimicrobial peptide found in Odorrana andersonii (golden crossband frog), and has antimicrobial activity.

Category
Functional Peptides
Catalog number
BAT-011700
Synonyms
Pro-Met-Lys-Lys-Ser-Leu-Leu-Leu-Leu-Phe-Phe-Ile-Gly-Thr-Ile-Ser-Leu-Ser-Leu-Cys
Appearance
Powder
Purity
≥96%
Sequence
PMKKSLLLLFFIGTISLSLC
Storage
Store at -20°C
1. Identification and structure-activity relationship of an antimicrobial peptide of the palustrin-2 family isolated from the skin of the endangered frog Odorrana ishikawae
Eiko Iwakoshi-Ukena, Genya Okada, Aiko Okimoto, Tamotsu Fujii, Masayuki Sumida, Kazuyoshi Ukena Peptides. 2011 Oct;32(10):2052-7. doi: 10.1016/j.peptides.2011.08.024. Epub 2011 Sep 3.
Recently, we identified nine novel antimicrobial peptides from the skin of the endangered anuran species, Odorrana ishikawae, to assess its innate immune system. In this study an additional antimicrobial peptide was initially isolated based on antimicrobial activity against Escherichia coli. The new antimicrobial peptide belonging to the palustrin-2 family was named palustrin-2ISb. It consists of 36 amino acid residues including 7 amino acids C-terminal to the cyclic heptapeptide Rana box domain. The peptide's primary structure suggests a close relationship with the Chinese odorous frog, Odorrana grahami. The cloned cDNA encoding the precursor protein contained a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and the C-terminal precursor antimicrobial peptide. It also contained 3 amino acid residues at the C-terminus not found in the mature peptide. Finally, the antimicrobial activities against four microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus and Candida albicans) were investigated using several synthetic peptides. A 29 amino acid truncated form of the peptide, lacking the 7 amino acids C-terminal to the Rana box, possessed greater antimicrobial activities than the native structure.
2. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease
Arun K Ghosh, Heather L Osswald Chem Soc Rev. 2014 Oct 7;43(19):6765-813. doi: 10.1039/c3cs60460h.
BACE1 (β-secretase, memapsin 2, Asp2) has emerged as a promising target for the treatment of Alzheimer's disease. BACE1 is an aspartic protease which functions in the first step of the pathway leading to the production and deposition of amyloid-β peptide (Aβ). Its gene deletion showed only mild phenotypes. BACE1 inhibition has direct implications in the Alzheimer's disease pathology without largely affecting viability. However, inhibiting BACE1 selectively in vivo has presented many challenges to medicinal chemists. Since its identification in 2000, inhibitors covering many different structural classes have been designed and developed. These inhibitors can be largely classified as either peptidomimetic or non-peptidic inhibitors. Progress in these fields resulted in inhibitors that contain many targeted drug-like characteristics. In this review, we describe structure-based design strategies and evolution of a wide range of BACE1 inhibitors including compounds that have been shown to reduce brain Aβ, rescue the cognitive decline in transgenic AD mice and inhibitor drug candidates that are currently in clinical trials.
3. Peptidome: Chaos or Inevitability
Irina Lyapina, Vadim Ivanov, Igor Fesenko Int J Mol Sci. 2021 Dec 4;22(23):13128. doi: 10.3390/ijms222313128.
Thousands of naturally occurring peptides differing in their origin, abundance and possible functions have been identified in the tissue and biological fluids of vertebrates, insects, fungi, plants and bacteria. These peptide pools are referred to as intracellular or extracellular peptidomes, and besides a small proportion of well-characterized peptide hormones and defense peptides, are poorly characterized. However, a growing body of evidence suggests that unknown bioactive peptides are hidden in the peptidomes of different organisms. In this review, we present a comprehensive overview of the mechanisms of generation and properties of peptidomes across different organisms. Based on their origin, we propose three large peptide groups-functional protein "degradome", small open reading frame (smORF)-encoded peptides (smORFome) and specific precursor-derived peptides. The composition of peptide pools identified by mass-spectrometry analysis in human cells, plants, yeast and bacteria is compared and discussed. The functions of different peptide groups, for example the role of the "degradome" in promoting defense signaling, are also considered.
Online Inquiry
Verification code
Inquiry Basket