Pancreatic Polypeptide, rat
Need Assistance?
  • US & Canada:
    +
  • UK: +

Pancreatic Polypeptide, rat

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Pancreatic Polypeptide, rat is an agonist of NPY receptor with high affinity at NPYR4.

Category
Peptide Inhibitors
Catalog number
BAT-010584
CAS number
90419-12-8
Molecular Formula
C195H298N58O57S
Molecular Weight
4398.87
IUPAC Name
(4S)-5-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-1-[(2S)-2-[[(2S)-1-[[(2S)-1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidine-2-carbonyl]amino]-4-methylpentanoyl]amino]-4-carboxybutanoyl]pyrrolidine-2-carbonyl]amino]-4-methylsulfanylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carbonyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-5-oxopentanoic acid
Synonyms
Rat pancreatic polypeptide; Ala-Pro-Leu-Glu-Pro-Met-Tyr-Pro-Gly-Asp-Tyr-Ala-Thr-His-Glu-Gln-Arg-Ala-Gln-Tyr-Glu-Thr-Gln-Leu-Arg-Arg-Tyr-Ile-Asn-Thr-Leu-Thr-Arg-Pro-Arg-Tyr-NH2; L-alanyl-L-prolyl-L-leucyl-L-alpha-glutamyl-L-prolyl-L-methionyl-L-tyrosyl-L-prolyl-glycyl-L-alpha-aspartyl-L-tyrosyl-L-alanyl-L-threonyl-L-histidyl-L-alpha-glutamyl-L-glutaminyl-L-arginyl-L-alanyl-L-glutaminyl-L-tyrosyl-L-alpha-glutamyl-L-threonyl-L-glutaminyl-L-leucyl-L-arginyl-L-arginyl-L-tyrosyl-L-isoleucyl-L-asparagyl-L-threonyl-L-leucyl-L-threonyl-L-arginyl-L-prolyl-L-arginyl-L-tyrosinamide
Appearance
White or Off-white Lyophilized Powder
Purity
≥95%
Sequence
APLEPMYPGDYATHEQRAQYETQLRRYINTLTRPRY-NH2
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C195H298N58O57S/c1-17-96(8)151(182(302)243-135(88-145(200)266)177(297)249-155(103(15)257)186(306)241-130(81-95(6)7)175(295)248-154(102(14)256)184(304)234-125(31-22-73-217-195(210)211)188(308)252-76-25-34-140(252)179(299)230-118(30-21-72-216-194(208)209)161(281)235-127(156(201)276)82-104-36-46-110(258)47-37-104)245-176(296)133(85-107-42-52-113(261)53-43-107)238-162(282)117(29-20-71-215-193(206)207)225-160(280)116(28-19-70-214-192(204)205)226-170(290)128(79-93(2)3)236-166(286)121(58-64-144(199)265)232-183(303)153(101(13)255)247-168(288)123(60-66-148(270)271)229-172(292)132(84-106-40-50-112(260)51-41-106)237-165(285)119(56-62-142(197)263)223-157(277)98(10)220-159(279)115(27-18-69-213-191(202)203)224-163(283)120(57-63-143(198)264)227-164(284)122(59-65-147(268)269)228-173(293)134(87-109-90-212-92-219-109)242-185(305)152(100(12)254)246-158(278)99(11)221-169(289)131(83-105-38-48-111(259)49-39-105)239-174(294)136(89-150(274)275)222-146(267)91-218-178(298)138-32-23-75-251(138)190(310)137(86-108-44-54-114(262)55-45-108)244-167(287)124(68-78-311-16)231-180(300)141-35-26-77-253(141)189(309)126(61-67-149(272)273)233-171(291)129(80-94(4)5)240-181(301)139-33-24-74-250(139)187(307)97(9)196/h36-55,90,92-103,115-141,151-155,254-262H,17-35,56-89,91,196H2,1-16H3,(H2,197,263)(H2,198,264)(H2,199,265)(H2,200,266)(H2,201,276)(H,212,219)(H,218,298)(H,220,279)(H,221,289)(H,222,267)(H,223,277)(H,224,283)(H,225,280)(H,226,290)(H,227,284)(H,228,293)(H,229,292)(H,230,299)(H,231,300)(H,232,303)(H,233,291)(H,234,304)(H,235,281)(H,236,286)(H,237,285)(H,238,282)(H,239,294)(H,240,301)(H,241,306)(H,242,305)(H,243,302)(H,244,287)(H,245,296)(H,246,278)(H,247,288)(H,248,295)(H,249,297)(H,268,269)(H,270,271)(H,272,273)(H,274,275)(H4,202,203,213)(H4,204,205,214)(H4,206,207,215)(H4,208,209,216)(H4,210,211,217)/t96-,97-,98-,99-,100+,101+,102+,103+,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,135-,136-,137-,138-,139-,140-,141-,151-,152-,153-,154-,155-/m0/s1
InChI Key
HUJWEJGOJPFOPZ-OPNBVHMHSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(=O)N)C(=O)NC(C(C)O)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCNC(=N)N)C(=O)N1CCCC1C(=O)NC(CCCNC(=N)N)C(=O)NC(CC2=CC=C(C=C2)O)C(=O)N)NC(=O)C(CC3=CC=C(C=C3)O)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC(C)C)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)O)NC(=O)C(CCC(=O)O)NC(=O)C(CC4=CC=C(C=C4)O)NC(=O)C(CCC(=O)N)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCC(=O)O)NC(=O)C(CC5=CN=CN5)NC(=O)C(C(C)O)NC(=O)C(C)NC(=O)C(CC6=CC=C(C=C6)O)NC(=O)C(CC(=O)O)NC(=O)CNC(=O)C7CCCN7C(=O)C(CC8=CC=C(C=C8)O)NC(=O)C(CCSC)NC(=O)C9CCCN9C(=O)C(CCC(=O)O)NC(=O)C(CC(C)C)NC(=O)C1CCCN1C(=O)C(C)N
1. Action of pancreatic polypeptide on rat pancreatic secretion: in vivo and in vitro
D S Louie, J A Williams, C Owyang Am J Physiol . 1985 Oct;249(4 Pt 1):G489-95. doi: 10.1152/ajpgi.1985.249.4.G489.
The biological activity of bovine pancreatic polypeptide (BPP) on rat exocrine pancreatic secretion was compared in vivo and in vitro. In anesthetized rats prepared with a bile-pancreatic duct cannula, BPP inhibited cholecystokinin (CCK)-stimulated (10 IDU . kg-1 X h-1) protein secretion in a dose-related manner (P less than 0.001). CCK, from 5-20 IDU . kg-1 X h-1, did not alter the degree of inhibition by BPP at 40 micrograms . kg-1 X h-1, suggesting a nonsurmountable inhibition. Analogues of BPP, including rat pancreatic polypeptide, neuropeptide Y, peptide YY, and the C-terminal hexapeptide of PP, also inhibited CCK-stimulated protein secretion. To determine whether BPP acts directly on acinar cells to suppress enzyme secretion, in vitro studies were performed. BPP and its analogues did not suppress octapeptide of CCK (CCK-8)-stimulated amylase release from either isolated rat pancreatic acini or preparations of pancreatic lobules. Specific binding of 125I-BPP to pancreatic acini was also not observed. From our data we conclude that BPP acts to inhibit pancreatic enzyme secretion in the rat in a noncompetitive manner. Absence of an effect by BPP or its analogues in vitro coupled with an absence of 125I-BPP binding to acini suggest that the inhibitory action of PP on exocrine pancreatic function is mediated by indirect mechanisms.
2. Discrimination of Single Living Rat Pancreatic α, β, δ, and Pancreatic Polypeptide (PP) Cells Using Raman Spectroscopy
Shu-Shi Huang, Rui-Qiong Luo, Yue-Ming Jiang, Hong Liu, Fang Wei, Qi-Qi Kuang, Xue Yuan, Dong-Ping Yin, Xi Rong Appl Spectrosc . 2018 May;72(5):706-714. doi: 10.1177/0003702818757993.
Primary pancreatic α, β, δ, and pancreatic polypeptide (PP) cells are reliable cell models for diabetes research. However, the separation and purification of these cells in living conditions remains an obstacle for researchers. The interaction of visible light with cellular molecules can produce Raman scattering, which can be analyzed to obtain cellular intrinsic molecular fingerprints. It has been speculated that primary pancreatic α, β, δ, and PP cells can be identified and separated from each other according to their spectral differences. To test this hypothesis, Raman spectra detection was performed on rat islet cells. Single islet cells identified by Raman scattering under living conditions were verified using immunohistochemistry. Thus, Raman data were acquired from a pure line of islet cells as a training sample and then used to establish the discriminant function. Then, using the principal component analysis-linear discriminate analysis (PCA-LDA) method, the four types of islet cells could be identified and discriminated by Raman spectroscopy. This study provides a label-free and noninvasive method for discriminating islet cell types in a randomly distributed mixed islet cell population via their physical properties rather than by using antibodies or fluorescence labeling.
3. Distribution of pancreatic polypeptide-like immunoreactivity in rat tissues
K Miyazaki, A Funakoshi Regul Pept . 1988 May;21(1-2):37-43. doi: 10.1016/0167-0115(88)90089-4.
The distribution of pancreatic polypeptide (PP)-like immunoreactivity (LI) in rat tissue was determined by a specific radioimmunoassay (RIA) after extraction with boiling 1 N acetic acid. The concentration of PP-LI in the ventral area of the pancreas (0.917 +/- 0.106 micrograms/g tissue) was about 10 times greater than that in the dorsal area of the pancreas (0.085 +/- 0.006 micrograms/g tissue). Extrapancreatic PP-LI was present in the colon (0.034 +/- 0.010 micrograms/g tissue) and rectum (0.019 +/- 0.001 micrograms/g tissue). The remainder of the gastrointestinal tract, the lung, kidney, liver, spleen, heart, adrenal gland, and central nervous system contained no measurable PP-LI. Reverse-phase high performance liquid chromatography analysis of the PP-LI materials from the pancreas, colon, and rectum revealed one peak which corresponds to the rat PP standard, under conditions of elution which clearly separated PP, NPY, PYY. These results show that distribution of PP-LI in the rat is different from other known distributions in the PP family of peptides.
Online Inquiry
Verification code
Inquiry Basket