pep2-EVKI
Need Assistance?
  • US & Canada:
    +
  • UK: +

pep2-EVKI

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

It is a selective peptide inhibitor of GluR2 subunit (at the C-terminal PDZ site) binding to PICK1.

Category
Peptide Inhibitors
Catalog number
BAT-009140
CAS number
1315378-67-6
Molecular Formula
C62H95N13O19
Molecular Weight
1326.51
IUPAC Name
(2S,3S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-3-methylpentanoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]-3-methylbutanoyl]amino]hexanoyl]amino]-3-methylpentanoic acid
Synonyms
H-Tyr-Asn-Val-Tyr-Gly-Ile-Glu-Glu-Val-Lys-Ile-OH; L-tyrosyl-L-asparagyl-L-valyl-L-tyrosyl-glycyl-L-isoleucyl-L-alpha-glutamyl-L-alpha-glutamyl-L-valyl-L-lysyl-L-isoleucine
Appearance
White Lyophilized Solid
Purity
>98%
Density
1.3±0.1 g/cm3
Boiling Point
1706.2±65.0°C at 760 mmHg
Sequence
YNVYGIEEVKI
Storage
Store at -20°C
Solubility
Soluble in PBS (pH6.8, 1 mg/mL)
InChI
InChI=1S/C62H95N13O19/c1-9-33(7)51(61(92)69-41(22-24-47(80)81)55(86)67-42(23-25-48(82)83)57(88)73-49(31(3)4)59(90)68-40(13-11-12-26-63)56(87)75-52(62(93)94)34(8)10-2)72-46(79)30-66-54(85)43(28-36-16-20-38(77)21-17-36)71-60(91)50(32(5)6)74-58(89)44(29-45(65)78)70-53(84)39(64)27-35-14-18-37(76)19-15-35/h14-21,31-34,39-44,49-52,76-77H,9-13,22-30,63-64H2,1-8H3,(H2,65,78)(H,66,85)(H,67,86)(H,68,90)(H,69,92)(H,70,84)(H,71,91)(H,72,79)(H,73,88)(H,74,89)(H,75,87)(H,80,81)(H,82,83)(H,93,94)/t33-,34-,39-,40-,41-,42-,43-,44-,49-,50-,51-,52-/m0/s1
InChI Key
KGQYILLVACJAQP-XMCCVONBSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)O)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)O)NC(=O)CNC(=O)C(CC1=CC=C(C=C1)O)NC(=O)C(C(C)C)NC(=O)C(CC(=O)N)NC(=O)C(CC2=CC=C(C=C2)O)N
1. PDZ protein mediated activity-dependent LTP/LTD developmental switch at rat retinocollicular synapses
Lei Xue, Fan Zhang, Xianhua Chen, Junji Lin, Jian Shi Am J Physiol Cell Physiol. 2010 Jun;298(6):C1572-82. doi: 10.1152/ajpcell.00012.2010. Epub 2010 Mar 24.
The insertion of amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors into the plasma membrane and removal via internalization are essential for regulating synaptic strength, which underlies the basic mechanism of learning and memory. The retinocollicular pathway undergoes synaptic refinement during development and shows a wide variety of long-term synaptic changes; however, still little is known about its underlying molecular regulation. Here we report a rapid developmental long-term potentiation (LTP)/long-term depression (LTD) switch and its intracellular mechanism at the rat retinocollicular pathway from postnatal day 5 (P5) to P14. Before P9, neurons always exhibited LTP, whereas LTD was observed only after P10. Blockade of GluR2/3-glutamate receptor-interacting protein (GRIP)/AMPA-receptor-binding protein (ABP)/protein interacting with C kinase 1 (PICK1) interactions with pep2-SVKI could sustain the LTP after P10. This suggests that the LTP/LTD switch relied on PDZ protein activities. Selective interruption of GluR2/3-PICK1 binding by pep2-EVKI blocked the long-lasting effects of both LTP and LTD, suggesting a role for PICK1 in the maintenance of long-term synaptic plasticity. Interestingly, synaptic expression of GRIP increased more than twofold from P7 to P11, whereas ABP and PICK1 expression levels remained stable. Blockade of spontaneous retinal input suppressed this increase and abolished the LTP/LTD switch. These results suggest that the increased GRIP synaptic expression may be a key regulatory factor in mediating the activity-dependent developmental LTP/LTD switch, whereas PICK1 may be required for both LTP and LTD to maintain their long-term effects.
2. Emergence of Endocytosis-Dependent mGlu1 LTD at Nucleus Accumbens Synapses After Withdrawal From Cocaine Self-Administration
Andrew F Scheyer, Daniel T Christian, Marina E Wolf, Kuei Y Tseng Front Synaptic Neurosci. 2018 Oct 23;10:36. doi: 10.3389/fnsyn.2018.00036. eCollection 2018.
Extended-access cocaine self-administration induces a progressive intensification of cue-induced drug craving during withdrawal termed "incubation of cocaine craving". Rats evaluated after >1 month of withdrawal (when incubation of craving is robust) display alterations in excitatory synapses onto medium spiny neurons (MSNs) of the nucleus accumbens (NAc), including elevated levels of Ca2+-permeable AMPA receptors (CP-AMPAR) and a transition from group I metabotropic glutamate receptor (mGluR) mGlu5- to mGlu1-mediated synaptic depression. It is important to further characterize the emergent form of mGlu1-mediated synaptic depression because it has been demonstrated that mGlu1 stimulation, by normalizing CP-AMPAR transmission, reduces cue-induced cocaine craving. In the present study, we conducted whole-cell patch-clamp recordings in NAc core MSNs, comparing rats that underwent >35 days of withdrawal from cocaine self-administration to control rats that had self-administered saline. Bath application of the nonselective group I mGluR agonist dihydroxyphenylglycine (DHPG) produced a transient mGlu5-mediated synaptic depression in saline controls, whereas a persistent mGlu1-mediated synaptic depression emerged in cocaine rats. This form of long-term depression (LTD) was abolished by the inclusion of dynamin inhibitory peptide (DIP) in the recording electrode, indicating that it is mediated by removal of CP-AMPARs through a dynamin-dependent endocytosis mechanism. We further showed that CP-AMPAR endocytosis is normally coupled to the PICK1-mediated insertion of Ca2+-impermeable AMPARs (CI-AMPAR). Interestingly, this coupling is not obligatory because disruption of PICK1-mediated CI-AMPAR insertion with pep2-EVKI spared mGlu1-mediated CP-AMPAR endocytosis. Collectively, these results reveal similarities but also differences from mGlu1-LTD observed in other brain regions, and further our understanding of a form of plasticity that may be targeted to reduce cue-induced craving for cocaine and methamphetamine.
3. Contribution of AMPA Receptor-Mediated LTD in LA/BLA-CeA Pathway to Comorbid Aversive and Depressive Symptoms in Neuropathic Pain
Hong Jiang, Jiang-Ping Liu, Ke Xi, Ling-Yu Liu, Ling-Yu Kong, Jie Cai, Si-Qing Cai, Xi-Yuan Han, Jing-Gui Song, Xiao-Mei Yang, You Wan, Guo-Gang Xing J Neurosci. 2021 Aug 25;41(34):7278-7299. doi: 10.1523/JNEUROSCI.2678-20.2021. Epub 2021 Jul 16.
Comorbid anxiety and depressive symptoms in chronic pain are a common health problem, but the underlying mechanisms remain unclear. Previously, we have demonstrated that sensitization of the CeA neurons via decreased GABAergic inhibition contributes to anxiety-like behaviors in neuropathic pain rats. In this study, by using male Sprague Dawley rats, we reported that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain. Bilateral electrolytic lesions of CeA, but not lateral/basolateral nucleus of the amygdala (LA/BLA), abrogated both pain hypersensitivity and aversive and depressive symptoms of neuropathic rats induced by spinal nerve ligation (SNL). Moreover, SNL rats showed structural and functional neuroplasticity manifested as reduced dendritic spines on the CeA neurons and enhanced LTD at the LA/BLA-CeA synapse. Disruption of GluA2-containing AMPAR trafficking and endocytosis from synapses using synthetic peptides, either pep2-EVKI or Tat-GluA2(3Y), restored the enhanced LTD at the LA/BLA-CeA synapse, and alleviated the mechanical allodynia and comorbid aversive and depressive symptoms in neuropathic rats, indicating that the endocytosis of GluA2-containing AMPARs from synapses is probably involved in the LTD at the LA/BLA-CeA synapse and the comorbid aversive and depressive symptoms in neuropathic pain in SNL-operated rats. These data provide a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlight that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.SIGNIFICANCE STATEMENT Several studies have demonstrated the high comorbidity of negative affective disorders in patients with chronic pain. Understanding the affective aspects related to chronic pain may facilitate the development of novel therapies for more effective management. Here, we unravel that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain, and LTD at the amygdaloid LA/BLA-CeA synapse mediated by GluA2-containing AMPAR endocytosis underlies the comorbid aversive and depressive symptoms in neuropathic pain. This study provides a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlights that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.
Online Inquiry
Verification code
Inquiry Basket