pep2-SVKI
Need Assistance?
  • US & Canada:
    +
  • UK: +

pep2-SVKI

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Pep2-SVKI (SVKI) is a synthetic peptide that prevents the internalization of AMPA-type glutamate receptors.

Category
Peptide Inhibitors
Catalog number
BAT-010265
CAS number
328944-75-8
Molecular Formula
C60H93N13O18
Molecular Weight
1284.47
pep2-SVKI
IUPAC Name
(2S,3S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-3-methylpentanoyl]amino]-4-carboxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-methylbutanoyl]amino]hexanoyl]amino]-3-methylpentanoic acid
Synonyms
PEP2-SVKI; H-Tyr-Asn-Val-Tyr-Gly-Ile-Glu-Ser-Val-Lys-Ile-OH; L-Isoleucine, L-tyrosyl-L-asparaginyl-L-valyl-L-tyrosylglycyl-L-isoleucyl-L-α-glutamyl-L-seryl-L-valyl-L-lysyl-; L-Tyrosyl-L-asparaginyl-L-valyl-L-tyrosylglycyl-L-isoleucyl-L-α-glutamyl-L-seryl-L-valyl-L-lysyl-L-isoleucine
Related CAS
2763584-28-5 (acetate salt)
Appearance
White Lyophilized Solid
Purity
>98%
Density
1.286±0.06 g/cm3(Predicted)
Boiling Point
1676.8±65.0°C at 760 mmHg
Sequence
YNVYGIESVKI
Storage
Store at -20°C
InChI
InChI=1S/C60H93N13O18/c1-9-32(7)49(59(89)66-40(22-23-46(79)80)53(83)69-43(29-74)56(86)72-47(30(3)4)57(87)65-39(13-11-12-24-61)54(84)73-50(60(90)91)33(8)10-2)70-45(78)28-64-52(82)41(26-35-16-20-37(76)21-17-35)68-58(88)48(31(5)6)71-55(85)42(27-44(63)77)67-51(81)38(62)25-34-14-18-36(75)19-15-34/h14-21,30-33,38-43,47-50,74-76H,9-13,22-29,61-62H2,1-8H3,(H2,63,77)(H,64,82)(H,65,87)(H,66,89)(H,67,81)(H,68,88)(H,69,83)(H,70,78)(H,71,85)(H,72,86)(H,73,84)(H,79,80)(H,90,91)/t32-,33-,38-,39-,40-,41-,42-,43-,47-,48-,49-,50-/m0/s1
InChI Key
YWTNLHXVGSIPEM-YDSVATBTSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCC(=O)O)C(=O)NC(CO)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)O)NC(=O)CNC(=O)C(CC1=CC=C(C=C1)O)NC(=O)C(C(C)C)NC(=O)C(CC(=O)N)NC(=O)C(CC2=CC=C(C=C2)O)N
1.Trafficking of presynaptic AMPA receptors mediating neurotransmitter release: neuronal selectivity and relationships with sensitivity to cyclothiazide.
Pittaluga A1, Feligioni M, Longordo F, Luccini E, Raiteri M. Neuropharmacology. 2006 Mar;50(3):286-96. Epub 2005 Oct 19.
Postsynaptic glutamate AMPA receptors (AMPARs) can recycle between plasma membrane and intracellular pools. In contrast, trafficking of presynaptic AMPARs has not been investigated. AMPAR surface expression involves interactions between the GluR2 carboxy tail and various proteins including glutamate receptor-interacting protein (GRIP), AMPA receptor-binding protein (ABP), protein interacting with C kinase 1 (PICK1), N-ethyl-maleimide-sensitive fusion protein (NSF). Here, peptides known to selectively block the above interactions were entrapped into synaptosomes to study the effects on the AMPA-evoked release of [3H]noradrenaline ([3H]NA) and [3H]acetylcholine ([3H]ACh) from rat hippocampal and cortical synaptosomes, respectively. Internalization of pep2-SVKI to prevent GluR2-GRIP/ABP/PICK1 interactions potentiated the AMPA-evoked release of [3H]NA but left unmodified that of [3H]ACh. Similar potentiation was caused by pep2-AVKI, the blocker of GluR2-PICK1 interaction.
2.Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases.
Grey KB1, Burrell BD. J Neurophysiol. 2010 May;103(5):2737-46. doi: 10.1152/jn.01112.2009. Epub 2010 Mar 24.
The cellular properties of long-term potentiation (LTP) following pairing of pre- and postsynaptic activity were examined at a known glutamatergic synapse in the leech, specifically between the pressure (P) mechanosensory and anterior pagoda (AP) neurons. Stimulation of the presynaptic P cell (25 Hz) concurrent with a 2 nA depolarization of the postsynaptic AP cell significantly potentiated the P-to-AP excitatory postsynaptic potential (EPSP) in an N-methyl-d-aspartate receptor (NMDAR)-dependent manner based on inhibitory effects of the NMDAR antagonist MK801 and inhibition of the NMDAR glycine binding site by 7-chlorokynurenic acid. LTP was blocked by injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) into the postsynaptic (AP) cell, indicating a requirement for postsynaptic elevation of intracellular Ca(2+). Autocamtide-2-related inhibitory peptide (AIP), a specific inhibitor of Ca(2+)/calmodulin-dependent kinase II (CaMKII), and Rp-cAMP, an inhibitor of protein kinase A (PKA), also blocked pairing-induced potentiation, indicating a requirement for activation of CaMKII and PKA.
3.PDZ protein mediated activity-dependent LTP/LTD developmental switch at rat retinocollicular synapses.
Xue L1, Zhang F, Chen X, Lin J, Shi J. Am J Physiol Cell Physiol. 2010 Jun;298(6):C1572-82. doi: 10.1152/ajpcell.00012.2010. Epub 2010 Mar 24.
The insertion of amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors into the plasma membrane and removal via internalization are essential for regulating synaptic strength, which underlies the basic mechanism of learning and memory. The retinocollicular pathway undergoes synaptic refinement during development and shows a wide variety of long-term synaptic changes; however, still little is known about its underlying molecular regulation. Here we report a rapid developmental long-term potentiation (LTP)/long-term depression (LTD) switch and its intracellular mechanism at the rat retinocollicular pathway from postnatal day 5 (P5) to P14. Before P9, neurons always exhibited LTP, whereas LTD was observed only after P10. Blockade of GluR2/3-glutamate receptor-interacting protein (GRIP)/AMPA-receptor-binding protein (ABP)/protein interacting with C kinase 1 (PICK1) interactions with pep2-SVKI could sustain the LTP after P10. This suggests that the LTP/LTD switch relied on PDZ protein activities.
4.In vitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals.
Grilli M1, Summa M, Salamone A, Olivero G, Zappettini S, Di Prisco S, Feligioni M, Usai C, Pittaluga A, Marchi M. Neuropharmacology. 2012 Oct;63(5):916-26. doi: 10.1016/j.neuropharm.2012.06.049. Epub 2012 Jul 5.
Here we provide functional and immunocytochemical evidence supporting the presence on Nucleus Accumbens (NAc) dopaminergic terminals of cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors, which activation causes Ca²⁺-dependent [³H]dopamine ([³H]DA) exocytosis. These AMPA receptors cross-talk with co-localized nicotinic receptors (nAChRs), as suggested by the finding that in vitro short-term pre-exposure of synaptosomes to 30 μM nicotine caused a significant reduction of both the 30 μM nicotine and the 100 μM AMPA-evoked [³H]DA overflow. Entrapping pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA receptor endocytosis, in NAC synaptosomes prevented the nicotine-induced reduction of AMPA-mediated [³H]DA exocytosis, while pep2-SVKE, used as negative control, was inefficacious. Immunocytochemical studies showed that a significant percentage of NAc terminals were dopaminergic and that most of these terminals also posses GluA2 receptor subunits.
Online Inquiry
Verification code
Inquiry Basket