Peptide YY (3-36)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Peptide YY (3-36)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Peptide YY (3-36) is a Y2/Y5 Neuropeptide Y receptor agonist (IC50= 0.11 nM for inhibition of 125I-PYY binding to Y2 receptor). Human peptide YY (PYY) has roles in energy homeostasis, food ingestion, gut motility and insulin secretion.

Category
Peptide Inhibitors
Catalog number
BAT-006172
CAS number
126339-09-1
Molecular Formula
C176H272N52O54
Molecular Weight
3980.42
Peptide YY (3-36)
Size Price Stock Quantity
5 mg $299 In stock
IUPAC Name
(4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-4-[[2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-2-aminopropanoyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-4-carboxybutanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]acetyl]amino]-5-oxopentanoic acid
Synonyms
Peptide YY (PYY) (3-36), human; H-Ala-Lys-Pro-Glu-Ala-Pro-Gly-Glu-Asp-Ala-Ser-Pro-Glu-Glu-Leu-Ser-Arg-Tyr-Tyr-Ala-Ser-Leu-Arg-His-Tyr-Leu-Asn-Leu-Val-Thr-Arg-Gln-Arg-Tyr-NH2; L-alanyl-L-lysyl-L-prolyl-L-alpha-glutamyl-L-alanyl-L-prolyl-glycyl-L-alpha-glutamyl-L-alpha-aspartyl-L-alanyl-L-seryl-L-prolyl-L-alpha-glutamyl-L-alpha-glutamyl-L-leucyl-L-seryl-L-arginyl-L-tyrosyl-L-tyrosyl-L-alanyl-L-seryl-L-leucyl-L-arginyl-L-histidyl-L-tyrosyl-L-leucyl-L-asparagyl-L-leucyl-L-valyl-L-threonyl-L-arginyl-L-glutaminyl-L-arginyl-L-tyrosinamide; PYY (3-36) (canine, mouse, porcine, rat)
Related CAS
123583-37-9 (human)
Appearance
White or Off-white Lyophilized Powder
Purity
98%
Sequence
IKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY-NH2
Storage
Store at -20°C
Solubility
Soluble in Water (1 mg/mL)
InChI
InChI=1S/C176H272N52O54/c1-84(2)67-114(155(265)202-104(27-19-61-192-174(184)185)148(258)218-121(75-98-78-190-83-196-98)160(270)217-120(74-97-39-47-102(236)48-40-97)158(268)212-115(68-85(3)4)156(266)219-122(76-131(180)238)161(271)213-117(70-87(7)8)162(272)224-138(88(9)10)168(278)225-139(93(15)232)169(279)208-106(29-21-63-194-176(188)189)145(255)204-108(49-54-130(179)237)150(260)201-103(26-18-60-191-173(182)183)146(256)210-113(140(181)250)71-94-33-41-99(233)42-34-94)214-164(274)124(80-229)221-142(252)90(12)197-153(263)118(72-95-35-43-100(234)44-36-95)216-159(269)119(73-96-37-45-101(235)46-38-96)215-147(257)105(28-20-62-193-175(186)187)203-163(273)125(81-230)222-157(267)116(69-86(5)6)211-152(262)110(52-57-135(244)245)205-151(261)111(53-58-136(246)247)207-167(277)129-32-24-66-228(129)172(282)126(82-231)223-143(253)91(13)198-154(264)123(77-137(248)249)220-149(259)107(50-55-133(240)241)200-132(239)79-195-165(275)127-30-22-64-226(127)170(280)92(14)199-144(254)109(51-56-134(242)243)206-166(276)128-31-23-65-227(128)171(281)112(25-16-17-59-177)209-141(251)89(11)178/h33-48,78,83-93,103-129,138-139,229-236H,16-32,49-77,79-82,177-178H2,1-15H3,(H2,179,237)(H2,180,238)(H2,181,250)(H,190,196)(H,195,275)(H,197,263)(H,198,264)(H,199,254)(H,200,239)(H,201,260)(H,202,265)(H,203,273)(H,204,255)(H,205,261)(H,206,276)(H,207,277)(H,208,279)(H,209,251)(H,210,256)(H,211,262)(H,212,268)(H,213,271)(H,214,274)(H,215,257)(H,216,269)(H,217,270)(H,218,258)(H,219,266)(H,220,259)(H,221,252)(H,222,267)(H,223,253)(H,224,272)(H,225,278)(H,240,241)(H,242,243)(H,244,245)(H,246,247)(H,248,249)(H4,182,183,191)(H4,184,185,192)(H4,186,187,193)(H4,188,189,194)/t89-,90-,91-,92-,93+,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,138-,139-/m0/s1
InChI Key
AIYOBVCUSVSXOL-NYGOYQSZSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CC2=CC=C(C=C2)O)C(=O)NC(C)C(=O)NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC3=CNC=N3)C(=O)NC(CC4=CC=C(C=C4)O)C(=O)NC(CC(C)C)C(=O)NC(CC(=O)N)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC5=CC=C(C=C5)O)C(=O)N)NC(=O)C(CCC(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C6CCCN6C(=O)C(CO)NC(=O)C(C)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)O)NC(=O)CNC(=O)C7CCCN7C(=O)C(C)NC(=O)C(CCC(=O)O)NC(=O)C8CCCN8C(=O)C(CCCCN)NC(=O)C(C)N
1. Pharmacokinetic and pharmacodynamic modeling of gut hormone peptide YY(3-36) after pulmonary delivery
Guenther Hochhaus, Mong-Jen Chen, Jie Shao, Philip J Kuehl Drug Dev Ind Pharm . 2019 Jul;45(7):1101-1110. doi: 10.1080/03639045.2019.1593443.
Peptide YY(3-36)(PYY(3-36)) is an endogenous appetite suppressing peptide. The present research was to perform pharmacokinetic/pharmacodynamic (PK/PD) analysis for predicting the concentration- and response-time profiles of PYY(3-36)after systemic and pulmonary delivery in mice, with the goal of suggesting a potential pulmonary dosing regimen in humans. A PK/PD model was developed to describe PYY(3-36)plasma concentration - and relative food intake rate ratio (as % of control) - time profiles after intraperitoneal and subcutaneous administration, and inhalation in mice. The absorption of inhaled PYY(3-36)from the lungs of mice could only be described with a combined slow (absorption rate of 0.147 L/h) and fast (absorption rate of 104.4 L/h) absorption process, presumably related to absorption from the central and peripheral regions of the lungs. The estimates for IC50andImaxwere 6.8 ng/mL and 63.5%, respectively, based on inhibitoryEmaxmodel. The PK parameters, such as clearance (CL), volume of distribution at steady state (Vdss), and the absorption rates (ka), were then scaled to human's. The scaled human CL and Vdssfor obese subjects were 24.8 L/h and 9.0 L, respectively. The model predicted human plasma PYY(3-36)concentrations agreed reasonably well with placebo-normalized plasma PYY(3-36)concentrations after short-term infusion and SC injection in literature. An inhalation dose of PYY(3-36)of about 100 µg was proposed for obese subjects based on simulations. This PK/PD analysis satisfactorily described PYY(3-36)concentration-time and relative food intake rate ratio- time profiles at all doses and routes. The developed model might facilitate the inhalation dose selection of PYY(3-36).
2. Peptide YY (3-36) modulates intracellular calcium through activation of the phosphatidylinositol pathway in hippocampal neurons
Angela Regina Piovesan, Dênis Reis de Assis, Jaderson Costa da Costa, Cháriston André Dal Belo, Michelle Flores Domingues Neuropeptides . 2018 Feb;67:1-8. doi: 10.1016/j.npep.2017.11.003.
Peptide YY (PYY) belongs to the neuropeptide Y (NPY) family, which also includes the pancreatic polypeptide (PP) and NPY. PYY is secreted by the intestinal L cells, being present in the blood stream in two active forms capable of crossing the blood brain barrier, PYY (1-36) and its cleavage product, PYY (3-36). PYY is a selective agonist for the Y2 receptor (Y2R) and these receptors are abundant in the hippocampus. Here we investigated the mechanisms by which PYY (3-36) regulates intracellular Ca2+concentrations ([Ca2+]i) in hippocampal neurons by employing a calcium imaging technique in hippocampal cultures. Alterations in [Ca2+]iwere detected by changes in the Fluo-4 AM reagent emission. PYY (3-36) significantly increased [Ca2+] from the concentration of 10-11M as compared to the controls (infusion of HEPES-buffered solution (HBS) solution alone). The PYY (3-36)-increase in [Ca2+]iremained unchanged even in Ca2+-free extracellular solutions. Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pump (SERCA pump) inhibition partially prevent the PYY (3-36)-increase of [Ca2+]iand inositol 1,4,5-triphosphate receptor (IP3R) inhibition also decreased the PYY (3-36)-increase of [Ca2+]i. Taken together, our data strongly suggest that PYY (3-36) mobilizes calcium from the neuronal endoplasmic reticulum (ER) stores towards the cytoplasm. Next, we showed that PYY (3-36) inhibited high K+-induced increases of [Ca2+]i, suggesting that PYY (3-36) could also act by activating G-protein coupled inwardly rectifying potassium K+channels. Finally, the co-infusion of the Y2 receptor (Y2R) antagonist BIIE0246 with PYY (3-36) abolished the [Ca2+]iincrease induced by the peptide, suggesting that PYY (3-36)-induced [Ca2+]iincrease in hippocampal neurons occurs via Y2Rs.
3. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB
Robert E Steinert, Nori Geary, Lori Asarian, Michael Horowitz, Christine Feinle-Bisset, Christoph Beglinger Physiol Rev . 2017 Jan;97(1):411-463. doi: 10.1152/physrev.00031.2014.
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Online Inquiry
Verification code
Inquiry Basket