Perisulfakinin
Need Assistance?
  • US & Canada:
    +
  • UK: +

Perisulfakinin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Perisulfakinin was originally isolated from the corpora cardiaca of the American cockroach, Periplaneta americana.

Category
Others
Catalog number
BAT-015868
CAS number
125131-58-0
Molecular Formula
C64H86N18O22S2
Molecular Weight
1523.60
Perisulfakinin
IUPAC Name
(4S)-4-amino-5-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-1-oxo-3-(4-sulfooxyphenyl)propan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-oxopentanoic acid
Synonyms
Glu-gln-phe H-asp-asp-tyr(SO3H)-gly-his-met-arg-phe-NH2
Purity
95%
Density
1.56±0.1 g/cm3
Sequence
EQFDDXGHMRF
Storage
Store at -20°C
InChI
InChI=1S/C64H86N18O22S2/c1-105-24-22-42(59(96)76-40(13-8-23-71-64(68)69)57(94)78-43(54(67)91)25-34-9-4-2-5-10-34)77-61(98)46(28-37-31-70-33-73-37)74-50(84)32-72-56(93)44(27-36-14-16-38(17-15-36)104-106(101,102)103)79-62(99)47(29-52(87)88)82-63(100)48(30-53(89)90)81-60(97)45(26-35-11-6-3-7-12-35)80-58(95)41(19-20-49(66)83)75-55(92)39(65)18-21-51(85)86/h2-7,9-12,14-17,31,33,39-48H,8,13,18-30,32,65H2,1H3,(H2,66,83)(H2,67,91)(H,70,73)(H,72,93)(H,74,84)(H,75,92)(H,76,96)(H,77,98)(H,78,94)(H,79,99)(H,80,95)(H,81,97)(H,82,100)(H,85,86)(H,87,88)(H,89,90)(H4,68,69,71)(H,101,102,103)/t39-,40-,41-,42-,43-,44-,45-,46-,47-,48-/m0/s1
InChI Key
CEVHBPUISQUUSQ-BHEJXMHWSA-N
Canonical SMILES
CSCCC(C(=O)NC(CCCNC(=N)N)C(=O)NC(CC1=CC=CC=C1)C(=O)N)NC(=O)C(CC2=CN=CN2)NC(=O)CNC(=O)C(CC3=CC=C(C=C3)OS(=O)(=O)O)NC(=O)C(CC(=O)O)NC(=O)C(CC(=O)O)NC(=O)C(CC4=CC=CC=C4)NC(=O)C(CCC(=O)N)NC(=O)C(CCC(=O)O)N
1. Regulation of pharyngeal motility by FMRFamide and related peptides in the medicinal leech, Hirudo medicinalis
B A O'Gara,D Dlugosch,A Kandiel,N Kounalakis,P L Brown,A Abbasi,J K Geier,N C Henggeler,J W Ku Invert Neurosci . 1999;4(1):41-53. doi: 10.1007/pl00022367.
The medicinal leech possesses FMRFamide-like immunoreactivity in neural processes and somata associated with the pharynx and pharyngeal ganglia. The pharynx possessed about 25 immunoreactive somata; about half of the approximately 20 neurons of the pharyngeal ganglia were immunoreactive. We provide brief descriptions of several neurons located in the first neuromere of the subesophageal ganglion involved in controlling pharyngeal motility. Double-labeling experiments indicate that one of these cells, named Swallow neuron 1 (SW1), contains a FMRFamide-like peptide. Stimulation of SW1 caused the mouth to open and the pharynx to dilate. Upon termination of SW1 stimulation, the mouth closed, and a peristaltic wave progressed from the mouth down the length of the pharynx. Stimulation of SW1 did not produce 1:1 postsynaptic potentials in pharyngeal muscle cells. Thus, SW1 is apparently not a motor neuron. The pharynx responded to application of FMRFamide and related peptides by producing a series of 20- to 35-s phasic contractions superimposed upon an increase in basal tonus. The peptide-induced response was quantified by measuring increases in basal tonus, peak tension, and integrated area. Although there were some differences in the order of potency depending upon which parameter was considered, the approximate order of potency of RFamide peptides tested was: pQDPFLRFamide > or = FMRFamide approximately YGGFMRFamide > or = YMRFamide approximately FLRFamide approximately GGKYMRFamide approximately YLRFamide > leucomyosuppressin approximately perisulfakinin. Except for differences in potency, each of the RFamide peptides produced similar contractile waveforms. FMRFamide-induced responses were reduced by the protein kinase C inhibitor bisindolylmaleimide I (10 microM), the nonspecific protein kinase inhibitor H-7 (50 microM), and were increased by the protein phosphatase inhibitor okadaic acid (1 microM). However, the FMRFamide-induced response was unaffected by the protein kinase A inhibitor H-89 (1 microM), the phosphodiesterase inhibitor theophylline (1 mM), the phospholipase A(2) inhibitor OBAA (0.1 microM) or the cation channel blocker amiloride (100 microM).
2. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods
Christine Martin,Hans-Joachim Pflüger,Paul A Stevenson,Karin Hohberg,Georg Mayer,Izabela Poprawa,Ralph O Schill,Jan Rüdiger,Susann Kauschke,Martin Schlegel BMC Evol Biol . 2013 Oct 24;13:230. doi: 10.1186/1471-2148-13-230.
Background:Although molecular analyses have contributed to a better resolution of the animal tree of life, the phylogenetic position of tardigrades (water bears) is still controversial, as they have been united alternatively with nematodes, arthropods, onychophorans (velvet worms), or onychophorans plus arthropods. Depending on the hypothesis favoured, segmental ganglia in tardigrades and arthropods might either have evolved independently, or they might well be homologous, suggesting that they were either lost in onychophorans or are a synapomorphy of tardigrades and arthropods. To evaluate these alternatives, we analysed the organisation of the nervous system in three tardigrade species using antisera directed against tyrosinated and acetylated tubulin, the amine transmitter serotonin, and the invertebrate neuropeptides FMRFamide, allatostatin and perisulfakinin. In addition, we performed retrograde staining of nerves in the onychophoran Euperipatoides rowelli in order to compare the serial locations of motor neurons within the nervous system relative to the appendages they serve in arthropods, tardigrades and onychophorans.Results:Contrary to a previous report from a Macrobiotus species, our immunocytochemical and electron microscopic data revealed contralateral fibres and bundles of neurites in each trunk ganglion of three tardigrade species, including Macrobiotus cf. harmsworthi, Paramacrobiotus richtersi and Hypsibius dujardini. Moreover, we identified additional, extra-ganglionic commissures in the interpedal regions bridging the paired longitudinal connectives. Within the ganglia we found serially repeated sets of serotonin- and RFamid-like immunoreactive neurons. Furthermore, our data show that the trunk ganglia of tardigrades, which include the somata of motor neurons, are shifted anteriorly with respect to each corresponding leg pair, whereas no such shift is evident in the arrangement of motor neurons in the onychophoran nerve cords.Conclusions:Taken together, these data reveal three major correspondences between the segmental ganglia of tardigrades and arthropods, including (i) contralateral projections and commissures in each ganglion, (ii) segmentally repeated sets of immunoreactive neurons, and (iii) an anteriorly shifted (parasegmental) position of ganglia. These correspondences support the homology of segmental ganglia in tardigrades and arthropods, suggesting that these structures were either lost in Onychophora or, alternatively, evolved in the tardigrade/arthropod lineage.
3. In vitro release of digestive enzymes by FMRF amide related neuropeptides and analogues in the lepidopteran insect Opisina arenosella (Walk.)
R J Nachman,S Harshini,S Sreekumar Peptides . 2002 Oct;23(10):1759-63. doi: 10.1016/s0196-9781(02)00152-3.
The insect neuropeptides FMRF amide, leucomyosupressin (LMS) and neuropeptide analogues leucosulfakinins (FLSK and LSK II Ser (SO(3)H)), perisulfakinin (PSK), proleucosulfakinin (PLSK), 14A[phi1]WP-I, 542phi1, and 378A[5b]WP-I were assayed for their effects on the release of amylase and protease from the midgut tissue of larvae of Opisina arenosella. In the bioassay, empty midgut tubes ligated at both ends using hair were incubated with insect saline containing neuropeptides/analogues in a bioassay apparatus at 37 degrees C for 30 min. After incubation the contents of the midgut preparations were analyzed for amylase and protease activity. In control experiments, the midgut preparations were incubated in insect saline without neuropeptides. The results of the study reveal that for stimulating amylase release from midgut tissue, the peptides require an FXRF amide (X may be methionine or leucine) sequence at the C-terminal. The presence of HMRF amide at C-terminal of peptides may inhibit the release of amylase. Meanwhile, peptides with both FMRF and HMRF amide sequence at the C-terminal are found to be effective in stimulating protease release. The tetrapeptide segment at the C-terminal probably represent the active core of the neuropeptide.
4. Crickets in space
E Horn,H Agricola,S Forster,P Riewe,C Sebastian,S Boser Acta Astronaut . 2001 Aug-Nov;49(3-10):345-63. doi: 10.1016/s0094-5765(01)00111-4.
"Crickets in Space" (CRISP) was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal activation systems. These advantages allowed us to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to microgravity and hypergravity (hg) while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3g-conditions concerning their soma sizes but not their topographical arrangement. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity. The contrary physiological and behavioral results indicate a facilitation of 1g-readaptation by accessory gravity. proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of microgravity or hg-exposure related to the period of neuronal proliferation. Grant numbers: 50WB9553-7.
Online Inquiry
Verification code
Inquiry Basket