Phe-Met-Arg-Phe Like Peptide, Snail Helix aspersa
Need Assistance?
  • US & Canada:
    +
  • UK: +

Phe-Met-Arg-Phe Like Peptide, Snail Helix aspersa

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

It is a FMRF-like peptide derived from the visceral and somatic muscles of the Snail Helix aspersa.

Category
Peptide Inhibitors
Catalog number
BAT-010590
CAS number
98495-35-3
Molecular Formula
C44H61N11O10
Molecular Weight
904.02
Phe-Met-Arg-Phe Like Peptide, Snail Helix aspersa
IUPAC Name
(3S)-4-[(2S)-2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-4-oxo-3-[[(2S)-5-oxopyrrolidine-2-carbonyl]amino]butanoic acid
Synonyms
FMRF-Like Peptide; pGLU-Asp-Pro-Phe-Leu-Arg-Phe; Pyr-Asp-Pro-Phe-Leu-Arg-Phe-NH2; L-pyroglutamyl-L-alpha-aspartyl-L-prolyl-L-phenylalanyl-L-leucyl-L-arginyl-L-phenylalaninamide; L-Phenylalaninamide, 5-oxo-L-prolyl-L-alpha-aspartyl-L-prolyl-L-phenylalanyl-L-leucyl-L-arginyl-
Appearance
White Lyophilized Powder
Purity
≥95%
Density
1.43±0.1 g/cm3
Sequence
pGLU-DPFLRF
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C44H61N11O10/c1-25(2)21-31(40(62)50-28(15-9-19-48-44(46)47)38(60)51-30(37(45)59)22-26-11-5-3-6-12-26)52-41(63)32(23-27-13-7-4-8-14-27)53-42(64)34-16-10-20-55(34)43(65)33(24-36(57)58)54-39(61)29-17-18-35(56)49-29/h3-8,11-14,25,28-34H,9-10,15-24H2,1-2H3,(H2,45,59)(H,49,56)(H,50,62)(H,51,60)(H,52,63)(H,53,64)(H,54,61)(H,57,58)(H4,46,47,48)/t28-,29-,30-,31-,32-,33-,34-/m0/s1
InChI Key
CLWGEQPXAKIVMA-NXBWRCJVSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCCN=C(N)N)C(=O)NC(CC1=CC=CC=C1)C(=O)N)NC(=O)C(CC2=CC=CC=C2)NC(=O)C3CCCN3C(=O)C(CC(=O)O)NC(=O)C4CCC(=O)N4
1. FMRF-amide is a glucose-lowering hormone in the snail Helix aspersa
Éva D Kiss-Tóth,Tamás Rőszer Cell Tissue Res . 2014 Nov;358(2):371-83. doi: 10.1007/s00441-014-1966-x.
Although glucose is metabolically the most important carbohydrate in almost all living organisms, still little is known about the evolution of the hormonal control of cellular glucose uptake. In this study, we identify Phe-Met-Arg-Phe-amide (FMRFa), also known as molluscan cardioexcitatory tetrapeptide, as a glucose-lowering hormone in the snail Helix aspersa. FMRFa belongs to an evolutionarily conserved neuropeptide family and is involved in the neuron-to-muscle signal transmission in the snail digestive system. This study shows that, beyond this function, FMRFa also has glucose-lowering activity. We found neuronal transcription of genes encoding FMRFa and its receptor and moreover the hemolymph FMRFa levels were peaking at metabolically active periods of the snails. In turn, hypometabolism of the dormant periods was associated with abolished FMRFa production. In the absence of FMRFa, the midintestinal gland ("hepatopancreas") cells were deficient in their glucose uptake, contributing to the development of glucose intolerance. Exogenous FMRFa restored the absorption of hemolymph glucose by the midintestinal gland cells and improved glucose tolerance in dormant snails. We show that FMRFa was released to the hemolymph in response to glucose challenge. FMRFa-containing nerve terminals reach the interstitial sinusoids between the chondroid cells in the artery walls. We propose that, in addition to the known sites of possible FMRFa secretion, these perivascular sinusoids serve as neurohemal organs and allow FMRFa release. This study suggests that in evolution, not only the insulin-like peptides have adopted the ability to increase cellular glucose uptake and can act as hypoglycemic hormones.
2. The actions of FMRFamide-like peptides on visceral and somatic muscles of the snail Helix aspersa
M J Greenberg,H K Lehman J Exp Biol . 1987 Sep;131:55-68. doi: 10.1242/jeb.131.1.55.
Phe-Met-Arg-Phe-NH2 (FMRFamide) and pyroGlu-Asp-Pro-Phe-Leu-Arg-Phe-NH2 (pQDPFLRFamide) occur in the ganglia and tissues of the snail, Helix aspersa. This report describes the effects of these two neuropeptides on five visceral organs or somatic muscles isolated from the snail (Table 1). The epiphallus, as well as the rest of the male reproductive tract, was contracted by both FMRFamide and pQDPFLRFamide, and the threshold was usually below 5 X 10(-9) mol l-1 (Fig. 1). Both peptides also reduced the resting tone of the crop and decreased the force and frequency of its rhythmic activity; FMRFamide is about 10 times more potent (Fig. 4). In contrast, pQDPFLRFamide was about 100 times more potent than FMRFamide as a cardioexcitatory agent (Fig. 5). The actions of the peptides on the pharyngeal and tentacle retractor muscles were markedly different: FMRFamide primarily contracted these muscles; and pQDPFLRFamide usually had no effect alone, but relaxed or diminished contractions induced by FMRFamide and acetylcholine (ACh) (Figs 6, 8, 9). Other analogues of FMRFamide were tested, but none was as effective a relaxing agent as pQDPFLRFamide. The effects of FMRFamide and pQDPFLRFamide on all of the preparations could be distinguished from those produced by ACh and 5-hydroxytryptamine (5-HT); thus the actions of the neuropeptides were not mediated by cholinergic or serotonergic neurones. The stimulation of the musculature in the male reproductive tract and the inhibition of motility of the digestive system by FMRFamide and pQDPFLRFamide implicate these peptides in the control of reproductive behaviour. The effectiveness of pQDPFLRFamide in relaxing the retractor muscles and as a cardioexcitatory agent led to the hypothesis that this heptapeptide and FMRFamide, acting at distinct receptors, cooperate to regulate the excitability and contractility of the snail's musculature between the extremes of aestivation and active locomotion.
Online Inquiry
Verification code
Inquiry Basket