1. Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors
T N Pierre, A A Seon, M Amiche, P Nicolas Eur J Biochem. 2000 Jan;267(2):370-8. doi: 10.1046/j.1432-1327.2000.01012.x.
A novel family of peptide precursors that have very similar N-terminal preprosequences followed by markedly different C-terminal domains has been identified in the skin of hylid frogs belonging to the genus Phyllomedusinae. Biologically active peptides derived from the variable domains include the dermaseptins, 28-34-residue peptides that have a broad-spectrum microbicidal activity, and dermorphin and the deltorphins, D-amino acid containing heptapeptides that are very potent agonists for the micro-opioid and delta-opioid receptors, respectively. This report describes the isolation, synthesis and cloning of phylloxin, a prototypical member of a novel family of antimicrobial peptides derived from the processing of a dermaseptin/dermorphin-like precursor. The structure of phylloxin (GWMSKIASGIGTFLSGIQQ amide) shows no homology to the dermaseptins, but bears some resemblance to the levitide-precursor fragment and the xenopsin-precursor fragment, two antimicrobial peptides isolated from the skin of an evolutionarily distant frog species, Xenopus laevis. Circular dichroism spectra of phylloxin in low polarity medium, which mimics the lipophilicity of the membrane of target microorganisms, indicated 60-70% alpha-helical conformation, and predictions of secondary structure suggested that the peptide can be configured as an amphipathic helix spanning residues 1-19. Phylloxin is an addition to the structurally and functionally diverse peptide families encoded by the rapidly evolving C-terminal domains of the dermorphin/dermaseptin group of precursors.
2. Dermatoxin and phylloxin from the waxy monkey frog, Phyllomedusa sauvagei: cloning of precursor cDNAs and structural characterization from lyophilized skin secretion
Tianbao Chen, Brian Walker, Mei Zhou, Chris Shaw Regul Pept. 2005 Jul 15;129(1-3):103-8. doi: 10.1016/j.regpep.2005.01.017.
Amphibian skin is a morphologically, biochemically and physiologically complex organ that performs the wide range of functions necessary for amphibian survival. Here we describe the primary structures of representatives of two novel classes of amphibian skin antimicrobials, dermatoxin and phylloxin, from the skin secretion of Phyllomedusa sauvagei, deduced from their respective precursor encoding cDNAs cloned from a lyophilized skin secretion library. A degenerate primer, designed to a highly conserved domain in the 5'-untranslated region of analogous peptide precursor cDNAs from Phyllomedusa bicolor, was employed in a 3'-RACE reaction. Peptides with molecular masses coincident with precursor-deduced mature toxin peptides were identified in LC/MS fractions of skin secretion and primary structures were confirmed by MS/MS fragmentation. This integrated experimental approach can thus rapidly expedite the primary structural characterization of amphibian skin peptides in a manner that circumvents specimen sacrifice whilst preserving robustness of scientific data.
3. Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion
Tianbao Chen, Ron Gagliardo, Brian Walker, Mei Zhou, Chris Shaw Peptides. 2005 Dec;26(12):2624-8. doi: 10.1016/j.peptides.2005.04.017. Epub 2005 Jun 3.
Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.