PMEL (25-33)
Need Assistance?
  • US & Canada:
    +
  • UK: +

PMEL (25-33)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

PMEL (25-33) is a peptide derived from Melanocyte Protein PMEL 17, a 100 kDa type I transmembrane glycoprotein that is expressed primarily in pigment cells of the skin and eye.

Category
Others
Catalog number
BAT-009836
Synonyms
gp100 (25-33); Melanocyte protein PMEL (25-33)
Sequence
KVPRNQDWL
Storage
Common storage 2-8°C, long time storage -20°C.
1. Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain
Robert M Prins, et al. Cancer Immunol Immunother. 2008 Sep;57(9):1279-89. doi: 10.1007/s00262-008-0461-1. Epub 2008 Feb 6.
It is commonly believed that T cells have difficulty reaching tumors located in the brain due to the presumed "immune privilege" of the central nervous system (CNS). Therefore, we studied the biodistribution and anti-tumor activity of adoptively transferred T cells specific for an endogenous tumor-associated antigen (TAA), gp100, expressed by tumors implanted in the brain. Mice with pre-established intracranial (i.c.) tumors underwent total body irradiation (TBI) to induce transient lymphopenia, followed by the adoptive transfer of gp100(25-33)-specific CD8+ T cells (Pmel-1). Pmel-1 cells were transduced to express the bioluminescent imaging (BLI) gene luciferase. Following adoptive transfer, recipient mice were vaccinated with hgp100(25-33) peptide-pulsed dendritic cells (hgp100(25-33)/DC) and systemic interleukin 2 (IL-2). This treatment regimen resulted in significant reduction in tumor size and extended survival. Imaging of T cell trafficking demonstrated early accumulation of transduced T cells in lymph nodes draining the hgp100(25-33)/DC vaccination sites, the spleen and the cervical lymph nodes draining the CNS tumor. Subsequently, transduced T cells accumulated in the bone marrow and brain tumor. BLI could also detect significant differences in the expansion of gp100-specific CD8+ T cells in the treatment group compared with mice that did not receive either DC vaccination or IL-2. These differences in BLI correlated with the differences seen both in survival and tumor infiltrating lymphocytes (TIL). These studies demonstrate that peripheral tolerance to endogenous TAA can be overcome to treat tumors in the brain and suggest a novel trafficking paradigm for the homing of tumor-specific T cells that target CNS tumors.
2. Inflammatory Cytokines That Enhance Antigen Responsiveness of Naïve CD8+ T Lymphocytes Modulate Chromatin Accessibility of Genes Impacted by Antigen Stimulation
Akouavi Julite Irmine Quenum, Madanraj Appiya Santharam, Sheela Ramanathan, Subburaj Ilangumaran Int J Mol Sci. 2022 Nov 16;23(22):14122. doi: 10.3390/ijms232214122.
Naïve CD8+ T lymphocytes exposed to certain inflammatory cytokines undergo proliferation and display increased sensitivity to antigens. Such 'cytokine priming' can promote the activation of potentially autoreactive and antitumor CD8+ T cells by weak tissue antigens and tumor antigens. To elucidate the molecular mechanisms of cytokine priming, naïve PMEL-1 TCR transgenic CD8+ T lymphocytes were stimulated with IL-15 and IL-21, and chromatin accessibility was assessed using the assay for transposase-accessible chromatin (ATAC) sequencing. PMEL-1 cells stimulated by the cognate antigenic peptide mgp10025-33 served as controls. Cytokine-primed cells showed a limited number of opening and closing chromatin accessibility peaks compared to antigen-stimulated cells. However, the ATACseq peaks in cytokine-primed cells substantially overlapped with those of antigen-stimulated cells and mapped to several genes implicated in T cell signaling, activation, effector differentiation, negative regulation and exhaustion. Nonetheless, the expression of most of these genes was remarkably different between cytokine-primed and antigen-stimulated cells. In addition, cytokine priming impacted the expression of several genes following antigen stimulation in a synergistic or antagonistic manner. Our findings indicate that chromatin accessibility changes in cytokine-primed naïve CD8+ T cells not only underlie their increased antigen responsiveness but may also enhance their functional fitness by reducing exhaustion without compromising regulatory controls.
3. Optimizing T-cell receptor avidity with somatic hypermutation
David Bassan, Yosi Meir Gozlan, Adi Sharbi-Yunger, Esther Tzehoval, Lea Eisenbach Int J Cancer. 2019 Nov 15;145(10):2816-2826. doi: 10.1002/ijc.32612. Epub 2019 Aug 24.
Adoptive transfer of T cells that have been genetically modified to express an antitumor T-cell receptor (TCR) is a potent immunotherapy, but only if TCR avidity is sufficiently high. Endogenous TCRs specific to shared (self) tumor-associated antigens (TAAs) have low affinity due to central tolerance. Therefore, for effective therapy, anti-TAA TCRs with higher and optimal avidity must be generated. Here, we describe a new in vitro system for directed evolution of TCR avidity using somatic hypermutation (SHM), a mechanism used in nature by B cells for antibody optimization. We identified 44 point mutations to the Pmel-1 TCR, specific for the H-2Db -gp10025-33 melanoma antigen. Primary T cells transduced with TCRs containing two or three of these mutations had enhanced activity in vitro. Furthermore, the triple-mutant TCR improved in vivo therapy of tumor-bearing mice, which exhibited improved survival, smaller tumors and delayed or no relapse. TCR avidity maturation by SHM may be an effective strategy to improve cancer immunotherapy.
Online Inquiry
Verification code
Inquiry Basket