Polybia-MP1
Need Assistance?
  • US & Canada:
    +
  • UK: +

Polybia-MP1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Polybia-MP1 is a mastoparan-related antimicrobial insect venom peptide that selectively inhibits the proliferation of prostate and bladder cancer cells.

Category
Peptide Inhibitors
Catalog number
BAT-014785
CAS number
872043-01-1
Molecular Formula
C78H132N20O19
Molecular Weight
1654.03
IUPAC Name
(3S)-4-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-5-amino-1-[[(2S,3S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-amino-3-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]hexanoyl]amino]hexanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoic acid
Synonyms
H-Ile-Asp-Trp-Lys-Lys-Leu-Leu-Asp-Ala-Ala-Lys-Gln-Ile-Leu-NH2; L-isoleucyl-L-alpha-aspartyl-L-tryptophyl-L-lysyl-L-lysyl-L-leucyl-L-leucyl-L-alpha-aspartyl-L-alanyl-L-alanyl-L-lysyl-L-glutaminyl-L-isoleucyl-L-leucinamide
Appearance
White Powder
Purity
≥95%
Density
1.2±0.1 g/cm3
Boiling Point
1860.7±65.0°C at 760 mmHg
Sequence
IDWKKLLDAAKQIL-NH2
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C78H132N20O19/c1-13-43(9)63(83)77(116)97-59(38-62(102)103)76(115)95-57(36-47-39-85-49-24-16-15-23-48(47)49)75(114)90-51(26-18-21-31-80)69(108)89-52(27-19-22-32-81)70(109)93-55(34-41(5)6)73(112)94-56(35-42(7)8)74(113)96-58(37-61(100)101)72(111)87-45(11)66(105)86-46(12)67(106)88-50(25-17-20-30-79)68(107)91-53(28-29-60(82)99)71(110)98-64(44(10)14-2)78(117)92-54(65(84)104)33-40(3)4/h15-16,23-24,39-46,50-59,63-64,85H,13-14,17-22,25-38,79-81,83H2,1-12H3,(H2,82,99)(H2,84,104)(H,86,105)(H,87,111)(H,88,106)(H,89,108)(H,90,114)(H,91,107)(H,92,117)(H,93,109)(H,94,112)(H,95,115)(H,96,113)(H,97,116)(H,98,110)(H,100,101)(H,102,103)/t43-,44-,45-,46-,50-,51-,52-,53-,54-,55-,56-,57-,58-,59-,63-,64-/m0/s1
InChI Key
WQWSKHPVGKVCQT-KXOXSZQSSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(=O)O)C(=O)NC(CC1=CNC2=CC=CC=C21)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CC(=O)O)C(=O)NC(C)C(=O)NC(C)C(=O)NC(CCCCN)C(=O)NC(CCC(=O)N)C(=O)NC(C(C)CC)C(=O)NC(CC(C)C)C(=O)N)N
1. Chemical approaches in the development of natural nontoxic peptide Polybia-MP1 as a potential dual antimicrobial and antitumor agent
Huy L Xuan, Tam D Duc, Anh M Thuy, Phuong M Chau, Truong T Tung Amino Acids. 2021 Jun;53(6):843-852. doi: 10.1007/s00726-021-02995-9. Epub 2021 May 4.
Polybia-MP1 is a well-known natural antimicrobial peptide that has been intensively studied recently due to its therapeutic potential. MP1 exhibited not only potent antibacterial activity but also antifungal and anticancer properties. More importantly, MP1 shows relatively low hemolytic activity compared to other antimicrobial peptides having a similar origin. Thus, besides investigating possible mechanisms of action, great efforts have been invested to develop this peptide to become more "druggable". In this review, we summarized all the chemical approaches, both success and failure, that using MP1 as a lead compound to create modified analogs with better pharmacological properties. As there have been thousands of natural AMPs found and deposited in numerous databases, such useful information in both the success and failure will provide insight into the research and development of antimicrobial peptides and guiding for the next steps.
2. The effect of acidic pH on the adsorption and lytic activity of the peptides Polybia-MP1 and its histidine-containing analog in anionic lipid membrane: a biophysical study by molecular dynamics and spectroscopy
Ingrid Bernardes Santana Martins, et al. Amino Acids. 2021 May;53(5):753-767. doi: 10.1007/s00726-021-02982-0. Epub 2021 Apr 22.
Antimicrobial peptides (AMPs) are part of the innate immune system of many species. AMPs are short sequences rich in charged and non-polar residues. They act on the lipid phase of the plasma membrane without requiring membrane receptors. Polybia-MP1 (MP1), extracted from a native wasp, is a broad-spectrum bactericide, an inhibitor of cancer cell proliferation being non-hemolytic and non-cytotoxic. MP1 mechanism of action and its adsorption mode is not yet completely known. Its adsorption to lipid bilayer and lytic activity is most likely dependent on the ionization state of its two acidic and three basic residues and consequently on the bulk pH. Here we investigated the effect of bulk acidic (pH 5.5) and neutral pH (7.4) solution on the adsorption, insertion, and lytic activity of MP1 and its analog H-MP1 to anionic (7POPC:3POPG) model membrane. H-MP1 is a synthetic analog of MP1 with lysines replaced by histidines. Bulk pH changes could modulate this peptide efficiency. The combination of different experimental techniques and molecular dynamics (MD) simulations showed that the adsorption, insertion, and lytic activity of H-MP1 are highly sensitive to bulk pH in opposition to MP1. The atomistic details, provided by MD simulations, showed peptides contact their N-termini to the bilayer before the insertion and then lay parallel to the bilayer. Their hydrophobic faces inserted into the acyl chain phase disturb the lipid-packing.
3. The insertion of Polybia-MP1 peptide into phospholipid monolayers is regulated by its anionic nature and phase state
Dayane S Alvares, Natalia Wilke, João Ruggiero Neto, Maria Laura Fanani Chem Phys Lipids. 2017 Oct;207(Pt A):38-48. doi: 10.1016/j.chemphyslip.2017.08.001. Epub 2017 Aug 10.
Polybia-MP1 or simply MP1 (IDWKKLLDAAKQIL-NH2) is a peptide with broad-spectrum bactericidal activity and a strong inhibitory effect against cancer cells. The aim of this work was to evaluate the effect of biophysical properties such as membrane texture and film thickness on MP1 interaction with neutral and anionic lipid membranes. For this purpose, we first explored the peptide's surface behavior. MP1 showed high surface activity, adsorbing onto bare air/aqueous interfaces up to higher surface pressures than the collapse pressure of MP1 Langmuir films. The MP1-lipid membrane interaction was studied using Langmuir phosphatidylcholine and phosphatidylserine (PS) monolayers as model membrane systems. PS was chosen since this negatively charged lipid was found predominantly on the outer leaflet of tumor cells, and it enhances MP1 activity for PS-containing membranes to a greater extent than for other negatively charged lipids. MP1 incorporated into anionic PS monolayers, which show a liquid-expanded (LE) phase or LE-liquid-condensed (LC) phase coexistence, up to lipid-packing densities higher than those of cell membranes. The mixed lipid/MP1 films were explored by Brewster angle microscopy and atomic force microscopy. MP1 partitioned preferentially into the LE phase state of PS films, and were thus excluded from the coexisting LC phase. This interaction had strong electrostatic bases: in pure water, the lipid-peptide interaction was strong enough to induce formation of reversible lipid-peptide 3D structures associated with the interface. MP1 incorporation into the LE phase was accompanied by a shift of the phase transition pressure to higher values and a thinning of the lipid film. These results showed a clear correlation between peptide penetration capacity and the presence or induction of the thin LE phase. This capacity to regulate membrane physical properties may be of relevance in the binding, incorporation and membrane selectivity of this promising antitumor peptide.
Online Inquiry
Verification code
Inquiry Basket