β-Pompilidotoxin
Need Assistance?
  • US & Canada:
    +
  • UK: +

β-Pompilidotoxin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

β-Pompilidotoxin slows the inactivation of neuronal Navs. β-Pompilidotoxin was isolated from the venoms of two wasps, Anoplius amariensis and Batozonellus maculifrons. This short peptide slows the inactivation of neuronal sodium channels and does not affect cardiac sodium channels.

Category
Peptide Inhibitors
Catalog number
BAT-016371
CAS number
216064-36-7
Molecular Formula
C71H124N22O17
Molecular Weight
1557.91
β-Pompilidotoxin
IUPAC Name
3-[[2-[[2-[[2-[[2-[[6-amino-2-[[2-[[2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-3-methylpentanoyl]amino]hexanoyl]amino]-3-methylpentanoyl]amino]acetyl]amino]-4-methylpentanoyl]amino]-3-phenylpropanoyl]amino]-4-[[5-amino-1-[[1-[[1-[[1-[(1-amino-4-methyl-1-oxopentan-2-yl)amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-oxobutanoic acid
Synonyms
beta-Pompilidotoxin
Appearance
White lyophilized solid
Purity
> 96% (HPLC)
Storage
Stable in freeze-dried state; keep in dark and cold place; in solution, keep at -20 °C.
Solubility
Water and saline buffer
InChI
InChI=1S/C71H124N22O17/c1-11-40(9)56(93-62(103)44(23-16-17-27-72)86-69(110)57(41(10)12-2)92-59(100)43(73)22-18-28-80-70(76)77)68(109)82-35-54(96)83-48(31-38(5)6)63(104)89-50(33-42-20-14-13-15-21-42)65(106)90-51(34-55(97)98)66(107)85-46(25-26-53(74)95)61(102)88-49(32-39(7)8)64(105)91-52(36-94)67(108)84-45(24-19-29-81-71(78)79)60(101)87-47(58(75)99)30-37(3)4/h13-15,20-21,37-41,43-52,56-57,94H,11-12,16-19,22-36,72-73H2,1-10H3,(H2,74,95)(H2,75,99)(H,82,109)(H,83,96)(H,84,108)(H,85,107)(H,86,110)(H,87,101)(H,88,102)(H,89,104)(H,90,106)(H,91,105)(H,92,100)(H,93,103)(H,97,98)(H4,76,77,80)(H4,78,79,81)
InChI Key
YBOJYGJMKPMNRC-UHFFFAOYSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NCC(=O)NC(CC(C)C)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CC(=O)O)C(=O)NC(CCC(=O)N)C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CCCN=C(N)N)C(=O)NC(CC(C)C)C(=O)N)NC(=O)C(CCCN=C(N)N)N
1. Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels
Richard G Webster, Keith L Brain, Angela Vincent, Jean L Grem, Richard H Wilson Br J Pharmacol . 2005 Dec;146(7):1027-39. doi: 10.1038/sj.bjp.0706407.
Oxaliplatin, an effective cytotoxic treatment in combination with 5-fluorouracil for colorectal cancer, is associated with sensory, motor and autonomic neurotoxicity. Motor symptoms include hyperexcitability while autonomic effects include urinary retention, but the cause of these side-effects is unknown. We examined the effects on motor nerve function in the mouse hemidiaphragm and on the autonomic system in the vas deferens. In the mouse diaphragm, oxaliplatin (0.5 mM) induced multiple endplate potentials (EPPs) following a single stimulus, and was associated with an increase in spontaneous miniature EPP frequency. In the vas deferens, spontaneous excitatory junction potential frequency was increased after 30 min exposure to oxaliplatin; no changes in resting Ca(2+) concentration in nerve terminal varicosities were observed, and recovery after stimuli trains was unaffected. In both tissues, an oxaliplatin-induced increase in spontaneous activity was prevented by the voltage-gated Na(+) channel blocker tetrodotoxin (TTX). Carbamazepine (0.3 mM) also prevented multiple EPPs and the increase in spontaneous activity in both tissues. In diaphragm, beta-pompilidotoxin (100 microM), which slows Na(+) channel inactivation, induced multiple EPPs similar to oxaliplatin's effect. By contrast, blockers of K(+) channels (4-aminopyridine and apamin) did not replicate oxaliplatin-induced hyperexcitability in the diaphragm. The prevention of hyperexcitability by TTX blockade implies that oxaliplatin acts on nerve conduction rather than by effecting repolarisation. The similarity between beta-pompilidotoxin and oxaliplatin suggests that alteration of voltage-gated Na(+) channel kinetics is likely to underlie the acute neurotoxic actions of oxaliplatin.
2. Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells
Thomas Knöpfel, Miles A Whittington, Roger D Traub, Steven J Middleton Eur J Neurosci . 2008 Oct;28(8):1603-16. doi: 10.1111/j.1460-9568.2008.06477.x.
Very fast oscillations (VFO; > 75 Hz) occur transiently in vivo, in the cerebellum of mice genetically modified to model Angelman syndrome, and in a mouse model of fetal alcohol syndrome. We recently reported VFO in slices of mouse cerebellar cortex (Crus I and II of ansiform and paramedian lobules), either in association with gamma oscillations (approximately 40 Hz, evoked by nicotine) or in isolation [evoked by nicotine in combination with gamma-aminobutyric acid (GABA)(A) receptor blockade]. The experimental data suggest a role for electrical coupling between Purkinje cells (blockade of VFO by drugs reducing gap junction conductance and spikelets in some Purkinje cells); and the data suggest the specific involvement of Purkinje cell axons (because of field oscillation maxima in the granular layer). We show here that a detailed network model (1000 multicompartment Purkinje cells) replicates the experimental data when gap junctions are located on the proximal axons of Purkinje cells, provided sufficient spontaneous firing is present. Unlike other VFO models, most somatic spikelets do not correspond to axonal spikes in the parent axon, but reflect spikes in electrically coupled axons. The model predicts gating of VFO frequency by g(Na) inactivation, and experiments prolonging this inactivation time constant, with beta-pompilidotoxin, are consistent with this prediction. The model also predicts that cerebellar VFO can be explained as an electrically coupled system of axons that are not intrinsic oscillators: the electrically uncoupled cells do not individually oscillate (in the model) and axonal firing rates are much lower in the uncoupled state than in the coupled state.
3. Differential effects of novel wasp toxin on rat hippocampal interneurons
Nobuhumi Kawai, Hidenori Yokota, Katsuhiro Konno, Takahiro Miyawaki, Hiroshi Tsubokawa, Toshio Masuzawa, Keiji Oguro Neurosci Lett . 2002 Aug 2;328(1):25-8. doi: 10.1016/s0304-3940(02)00432-9.
We studied the effects of a wasp toxin beta-pompilidotoxin (beta-PMTX) on rat hippocampal CA1 interneurons by the current-clamp technique. The firing patterns of pyramidal neurons and pyramidale interneurons were not affected by beta-PMTX, but in oriens and radiatum interneurons, beta-PMTX converted the action potentials to prolonged depolarizing potentials by slowing the inactivation of Na(+) channels. In lacunosum moleculare interneurons, beta-PMTX induced initial bursting spikes followed by block of succeeding spikes. Comparison of beta-PMTX with a sea anemone toxin, ATX II, revealed that ATX II altered the firing properties of pyramidal neurons and pyramidale interneurons that were unchanged by beta-PMTX. Our results suggest that beta-PMTX modulates Na(+) currents in CA1 interneurons differently in various CA1 neurons and the toxin is useful to classify Na(+) channel subtypes.
Online Inquiry
Verification code
Inquiry Basket