Prosaptide TX14(A)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Prosaptide TX14(A)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Prosaptide TX14(A) is a potent agonist of G protein-coupled receptors GPR37 and GPR37L1 (EC50 values are 7 and 5 nM, respectively). Prosaptide Tx 14(A) is the active fragment of prosaposin, a secreted neuroprotective and glioprotective factor.

Category
Peptide Inhibitors
Catalog number
BAT-010739
CAS number
196391-82-9
Molecular Formula
C69H110N16O26
Molecular Weight
1579.72
Prosaptide TX14(A)
IUPAC Name
(4S)-4-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3R)-2-amino-3-hydroxybutanoyl]amino]propanoyl]amino]-4-methylpentanoyl]amino]-3-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-4-oxobutanoyl]amino]-4-oxobutanoyl]amino]propanoyl]amino]-3-hydroxybutanoyl]amino]-4-carboxybutanoyl]amino]-5-[[(2S,3S)-1-[[(2S)-1-[[(1S)-1-carboxy-2-(4-hydroxyphenyl)ethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-5-oxopentanoic acid
Synonyms
H-Thr-D-Ala-Leu-Ile-Asp-Asn-Asn-Ala-Thr-Glu-Glu-Ile-Leu-Tyr-OH trifluoroacetate salt; Prosaptide trifluoroacetate salt; TX14(A) trifluoroacetate salt; TXLIDNNATEEILY (Modifications: Ala-2 = D-Ala) trifluoroacetate salt; TaLIDNNATEEILY trifluoroacetate salt
Density
1.326±0.06 g/cm3(Predicted)
Boiling Point
1954.9±65.0°C(Predicted)
Sequence
TALIDNNATEEILY
Storage
Store in a cool and dry place (or refer to the Certificate of Analysis).
InChI
InChI=1S/C69H110N16O26/c1-13-31(7)53(66(107)80-41(23-29(3)4)61(102)82-46(69(110)111)25-37-15-17-38(88)18-16-37)83-59(100)40(20-22-50(93)94)75-58(99)39(19-21-49(91)92)76-68(109)55(36(12)87)85-57(98)34(10)73-60(101)43(26-47(70)89)78-62(103)44(27-48(71)90)79-63(104)45(28-51(95)96)81-67(108)54(32(8)14-2)84-64(105)42(24-30(5)6)77-56(97)33(9)74-65(106)52(72)35(11)86/h15-18,29-36,39-46,52-55,86-88H,13-14,19-28,72H2,1-12H3,(H2,70,89)(H2,71,90)(H,73,101)(H,74,106)(H,75,99)(H,76,109)(H,77,97)(H,78,103)(H,79,104)(H,80,107)(H,81,108)(H,82,102)(H,83,100)(H,84,105)(H,85,98)(H,91,92)(H,93,94)(H,95,96)(H,110,111)/t31-,32-,33+,34-,35+,36+,39-,40-,41-,42-,43-,44-,45-,46-,52-,53-,54-,55-/m0/s1
InChI Key
SMUKRAODILXPSW-SRWCCNGVSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(C)C)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(C(C)O)NC(=O)C(C)NC(=O)C(CC(=O)N)NC(=O)C(CC(=O)N)NC(=O)C(CC(=O)O)NC(=O)C(C(C)CC)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(C(C)O)N
1.Designing stable blood-brain barrier-permeable prosaptide peptides for treatment of central nervous system neurodegeneration.
Taylor EM;Otero DA;Banks WA;O'Brien JS J Pharmacol Exp Ther. 2000 May;293(2):403-9.
Prosaposin-derived peptides have been proposed as potential therapeutics for neurodegenerative diseases. Previously, we reported that the minimal length for bioactivity was 12 amino acids, and key amino acids were described based on interspecies conservation. In this article, we have further investigated the sequence requirements for bioactive Prosaptide (Myelos Corporation) peptides in terms of length and amino acid identity. The use of Prosaptide peptides for treatment of central nervous system (CNS) disorders requires that they are stable in vivo. Although robust effects of our prototypical peptide Prosaptide TX14(A) have been shown in the peripheral nervous system, minimal success has been achieved when treating the CNS in rats and this may be due to instability of Prosaptide TX14(A) in brain. Herein, we demonstrate that, indeed, Prosaptide TX14(A) is rapidly degraded in the brain and we have attempted to design prosaptides with increased CNS stability. One peptide, Prosaptide TX15-2, shows increased stability in brain and may be of use in the treatment of CNS disorders. With the aim of designing Prosaptide peptides that may be systemically administered for CNS treatment, we have investigated the blood-brain barrier permeability of Prosaptide TX14(A) and TX15-2.
2.Elevated lipid peroxidation and DNA oxidation in nerve from diabetic rats: effects of aldose reductase inhibition, insulin, and neurotrophic factors.
Cunha JM;Jolivalt CG;Ramos KM;Gregory JA;Calcutt NA;Mizisin AP Metabolism. 2008 Jul;57(7):873-81. doi: 10.1016/j.metabol.2008.01.021.
We investigated the effect of treatment with an aldose reductase inhibitor, insulin, or select neurotrophic factors on the generation of oxidative damage in peripheral nerve. Rats were either treated with streptozotocin to induce insulin-deficient diabetes or fed with a diet containing 40% d-galactose to promote hexose metabolism by aldose reductase. Initial time course studies showed that lipid peroxidation and DNA oxidation were significantly elevated in sciatic nerve after 1 week or 2 weeks of streptozotocin-induced diabetes, respectively, and that both remained elevated after 12 weeks of diabetes. The increase in nerve lipid peroxidation was completely prevented or reversed by treatment with the aldose reductase inhibitor, ICI 222155, or by insulin, but not by the neurotrophic factors, prosaptide TX14(A) or neurotrophin-3. The increase in nerve DNA oxidation was significantly prevented by insulin treatment. In contrast, up to 16 weeks of galactose feeding did not alter nerve lipid peroxidation or protein oxidation, despite evidence of ongoing nerve conduction deficits. These observations demonstrate that nerve oxidative damage develops early after the onset of insulin-deficient diabetes and that it is not induced by increased hexose metabolism by aldose reductase per se, but rather is a downstream consequence of flux through this enzyme.
3.Impaired prosaposin secretion during nerve regeneration in diabetic rats and protection of nerve regeneration by a prosaposin-derived peptide.
Jolivalt CG;Vu Y;Mizisin LM;Mizisin AP;Calcutt NA J Neuropathol Exp Neurol. 2008 Jul;67(7):702-10. doi: 10.1097/NEN.0b013e31817e23f4.
Prosaposin is both a precursor of sphingolipid activator proteins and a secreted neurotrophic and myelinotrophic factor. Because peripheral nerve regeneration is impaired in diabetes mellitus, we measured prosaposin protein levels from control and streptozotocin-diabetic rats by collecting endoneurial fluid secreted into a bridging tube connecting the ends of transected sciatic nerve. Prosaposin protein levels were significantly reduced in endoneurial fluid from diabetic rats and increased in the proximal nerve stump compared to controls. To investigate whether a prosaposin-derived peptide could improve nerve regeneration, rats were treated with prosaptide TX14(A) after sciatic nerve crush. In control rats, TX14(A) was without effect in the uninjured nerve but shortened toe spread recovery time after nerve crush. In diabetic rats, efficacy of prosaptide TX14(A) was confirmed by correction of thermal hypoalgesia, formalin-evoked hyperalgesia, and conduction slowing in the uninjured nerve. The peptide also prevented diabetes-induced abnormalities in nerve regeneration distance and mean axonal diameter of regenerated axons, whereas delayed recovery of toe spread was not improved. Muscle denervation atrophy was attenuated by TX14(A) in both control and diabetic rats.
Online Inquiry
Verification code
Inquiry Basket