PrP 106-126 (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

PrP 106-126 (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Prion Protein 106-126 (human), a peptide fragment of the cellular prion protein PrP, is used as a model to investigate neurodegeneration in prion diseases. It exhibits neurotoxicity caused by amplification of PrPC-associated signaling responses and induces NF-κB-mediated apoptosis in the mouse neuroblastoma cell line N2a.

Category
Peptide Inhibitors
Catalog number
BAT-010611
CAS number
148439-49-0
Molecular Formula
C80H138N26O24S2
Molecular Weight
1912.24
PrP 106-126 (human)
IUPAC Name
2-[[(2S)-2-[[2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S,3R)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-hydroxybutanoyl]amino]-4-oxobutanoyl]amino]-4-methylsulfanylbutanoyl]amino]hexanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-4-methylsulfanylbutanoyl]amino]propanoyl]amino]acetyl]amino]propanoyl]amino]propanoyl]amino]propanoyl]amino]propanoyl]amino]acetyl]amino]propanoyl]amino]-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]acetyl]amino]acetyl]amino]-4-methylpentanoyl]amino]acetic acid
Synonyms
Prion Protein Fragment 106-126 Human; Prion Protein 106-126 (human); Lys-Thr-Asn-Met-Lys-His-Met-Ala-Gly-Ala-Ala-Ala-Ala-Gly-Ala-Val-Val-Gly-Gly-Leu-Gly; L-lysyl-L-threonyl-L-asparagyl-L-methionyl-L-lysyl-L-histidyl-L-methionyl-L-alanyl-glycyl-L-alanyl-L-alanyl-L-alanyl-L-alanyl-glycyl-L-alanyl-L-valyl-L-valyl-glycyl-glycyl-L-leucyl-glycine
Appearance
White Lyophilized Powder
Purity
≥95%
Density
1.283±0.06 g/cm3 (Predicted)
Boiling Point
2216.1±65.0°C (Predicted)
Sequence
KTNMKHMAGAAAAGAVVGGLG
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C80H138N26O24S2/c1-38(2)28-53(72(122)90-36-61(113)114)98-60(112)33-86-57(109)32-89-78(128)62(39(3)4)105-79(129)63(40(5)6)104-70(120)44(10)93-59(111)35-87-65(115)41(7)94-68(118)45(11)96-69(119)46(12)95-67(117)43(9)92-58(110)34-88-66(116)42(8)97-73(123)51(22-26-131-14)100-76(126)54(29-48-31-85-37-91-48)102-74(124)50(21-17-19-25-82)99-75(125)52(23-27-132-15)101-77(127)55(30-56(84)108)103-80(130)64(47(13)107)106-71(121)49(83)20-16-18-24-81/h31,37-47,49-55,62-64,107H,16-30,32-36,81-83H2,1-15H3,(H2,84,108)(H,85,91)(H,86,109)(H,87,115)(H,88,116)(H,89,128)(H,90,122)(H,92,110)(H,93,111)(H,94,118)(H,95,117)(H,96,119)(H,97,123)(H,98,112)(H,99,125)(H,100,126)(H,101,127)(H,102,124)(H,103,130)(H,104,120)(H,105,129)(H,106,121)(H,113,114)/t41-,42-,43-,44-,45-,46-,47+,49-,50-,51-,52-,53-,54-,55-,62-,63-,64-/m0/s1
InChI Key
XPZWWTIIKSODDO-MBNDGZRNSA-N
Canonical SMILES
CC(C)CC(C(=O)NCC(=O)O)NC(=O)CNC(=O)CNC(=O)C(C(C)C)NC(=O)C(C(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(C)NC(=O)C(C)NC(=O)C(C)NC(=O)C(C)NC(=O)CNC(=O)C(C)NC(=O)C(CCSC)NC(=O)C(CC1=CNC=N1)NC(=O)C(CCCCN)NC(=O)C(CCSC)NC(=O)C(CC(=O)N)NC(=O)C(C(C)O)NC(=O)C(CCCCN)N
1. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein
Karen Simonetti, Simon Sharpe, Patrick Walsh Structure . 2009 Mar 11;17(3):417-26. doi: 10.1016/j.str.2008.12.018.
Peptides comprising residues 106-126 of the human prion protein (PrP) exhibit many features of the full-length protein. PrP(106-126) induces apoptosis in neurons, forms fibrillar aggregates, and can mediate the conversion of native cellular PrP (PrP(C)) to the scrapie form (PrP(Sc)). Despite a wide range of biochemical and biophysical studies on this peptide, including investigation of its propensity for aggregation, interactions with cell membranes, and PrP-like toxicity, the structure of amyloid fibrils formed by PrP(106-126) remains poorly defined. In this study we use solid-state nuclear magnetic resonance to define the secondary and quaternary structure of PrP(106-126) fibrils. Our results reveal that PrP(106-126) forms in-register parallel beta sheets, stacked in an antiparallel fashion within the mature fibril. The close intermolecular contacts observed in the fibril core provide a rational for the sequence-dependent behavior of PrP(106-126), and provide a basis for further investigation of its biological properties.
2. Hetero-oligomeric Amyloid Assembly and Mechanism: Prion Fragment PrP(106-126) Catalyzes the Islet Amyloid Polypeptide β-Hairpin
Maxwell J Giammona, Chun Wu, Michael T Bowers, Steven K Buratto, Alexandre I Ilitchev, Sarah L Claud, Carina Olivas, Kristi L Lazar Cantrell J Am Chem Soc . 2018 Aug 1;140(30):9685-9695. doi: 10.1021/jacs.8b05925.
Protein aggregation is typically attributed to the association of homologous amino acid sequences between monomers of the same protein. Coaggregation of heterogeneous peptide species can occur, however, and is implicated in the proliferation of seemingly unrelated protein diseases in the body. The prion protein fragment (PrP106-126) and human islet amyloid polypeptide (hIAPP) serve as an interesting model of nonhomologous protein assembly as they coaggregate, despite a lack of sequence homology. We have applied ion-mobility mass spectrometry, atomic force microscopy, circular dichroism, and high-level molecular modeling to elucidate this important assembly process. We found that the prion fragment not only forms pervasive hetero-oligomeric aggregates with hIAPP but also promotes the transition of hIAPP into its amyloidogenic β-hairpin conformation. Further, when PrP106-126was combined with non-amyloidogenic rIAPP, the two formed nearly identical hetero-oligomers to those seen with hIAPP, despite rIAPP containing β-sheet breaking proline substitutions. Additionally, while rIAPP does not natively form the amyloidogenic β-hairpin structure, it did so in the presence of PrP106-126and underwent a conformational transition to β-sheet in solution. We also find that PrP106-126forms hetero-oligomers with the IAPP8-20fragment but not with the "aggregation hot spot" IAPP20-29fragment. PrP106-126apparently induces IAPP into a β-hairpin structure within the PrP:IAPP heterodimer complex and then, through ligand exchange, catalytically creates the amyloidogenic β-hairpin dimer of IAPP in significantly greater abundance than IAPP does on its own. This is a new mechanistic model that provides a critical foundation for the detailed study of hetero-oligomerization and prion-like proliferation in amyloid systems.
3. Ionic mechanisms of action of prion protein fragment PrP(106-126) in rat basal forebrain neurons
David Westaway, Zongming Li, Kwai Alier, David Mactavish, Jack H Jhamandas J Neurosci Res . 2010 Aug 1;88(10):2217-27. doi: 10.1002/jnr.22372.
Prion diseases are neurodegenerative disorders that are characterized by the presence of the misfolded prion protein (PrP). Neurotoxicity in these diseases may result from prion-induced modulation of ion channel function, changes in neuronal excitability, and consequent disruption of cellular homeostasis. We therefore examined PrP effects on a suite of potassium (K(+)) conductances that govern excitability of basal forebrain neurons. Our study examined the effects of a PrP fragment [PrP(106-126), 50 nM] on rat neurons using the patch clamp technique. In this paradigm, PrP(106-126) peptide, but not the "scrambled" sequence of PrP(106-126), evoked a reduction of whole-cell outward currents in a voltage range between -30 and +30 mV. Reduction of whole-cell outward currents was significantly attenuated in Ca(2+)-free external media and also in the presence of iberiotoxin, a blocker of calcium-activated potassium conductance. PrP(106-126) application also evoked a depression of the delayed rectifier (I(K)) and transient outward (I(A)) potassium currents. By using single cell RT-PCR, we identified the presence of two neuronal chemical phenotypes, GABAergic and cholinergic, in cells from which we recorded. Furthermore, cholinergic and GABAergic neurons were shown to express K(v)4.2 channels. Our data establish that the central region of PrP, defined by the PrP(106-126) peptide used at nanomolar concentrations, induces a reduction of specific K(+) channel conductances in basal forebrain neurons. These findings suggest novel links between PrP signalling partners inferred from genetic experiments, K(+) channels, and PrP-mediated neurotoxicity.
Online Inquiry
Verification code
Inquiry Basket