pTH (53-84) (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

pTH (53-84) (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

pTH (53-84) (human) is a highly bioactive peptide derived from human Parathyroid Hormone (PTH), used in the biomedical industry for studying bone metabolism disorders like osteoporosis. It aids in the understanding of PTH's effect on bone formation and resorption.

Category
Functional Peptides
Catalog number
BAT-015196
CAS number
89439-30-5
Molecular Formula
C149H253N43O54
Molecular Weight
3510.86
pTH (53-84) (human)
IUPAC Name
(2S)-5-amino-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2,6-diaminohexanoyl]amino]hexanoyl]amino]-4-carboxybutanoyl]amino]-3-carboxypropanoyl]amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-3-methylbutanoyl]amino]-4-carboxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-4-carboxybutanoyl]amino]hexanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-4-carboxybutanoyl]amino]propanoyl]amino]-3-carboxypropanoyl]amino]hexanoyl]amino]propanoyl]amino]-3-carboxypropanoyl]amino]-3-methylbutanoyl]amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]hexanoyl]amino]propanoyl]amino]hexanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoic acid
Synonyms
Parathyroid Hormone (53-84), human; H-Lys-Lys-Glu-Asp-Asn-Val-Leu-Val-Glu-Ser-His-Glu-Lys-Ser-Leu-Gly-Glu-Ala-Asp-Lys-Ala-Asp-Val-Asn-Val-Leu-Thr-Lys-Ala-Lys-Ser-Gln-OH; Parathyroid Hormone[Asn76]-Human Fragment 53-84; L-lysyl-L-lysyl-L-alpha-glutamyl-L-alpha-aspartyl-L-asparagyl-L-valyl-L-leucyl-L-valyl-L-alpha-glutamyl-L-seryl-L-histidyl-L-alpha-glutamyl-L-lysyl-L-seryl-L-leucyl-glycyl-L-alpha-glutamyl-L-alanyl-L-alpha-aspartyl-L-lysyl-L-alanyl-L-alpha-aspartyl-L-valyl-L-asparagyl-L-valyl-L-leucyl-L-threonyl-L-lysyl-L-alanyl-L-lysyl-L-seryl-L-glutamine
Appearance
White Powder
Purity
≥95% by HPLC
Density
1.327±0.06 g/cm3 (Predicted)
Boiling Point
3065.3±65.0°C (Predicted)
Sequence
KKEDNVLVESHEKSLGEADKADVNVLTKAKSQ
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C149H253N43O54/c1-68(2)53-91(178-142(238)101(65-194)186-129(225)85(36-24-30-52-155)169-130(226)87(39-44-108(203)204)172-133(229)94(56-79-62-160-67-162-79)179-143(239)102(66-195)187-132(228)89(41-46-110(207)208)174-144(240)114(71(7)8)188-136(232)92(54-69(3)4)182-145(241)115(72(9)10)189-138(234)95(57-104(158)198)180-135(231)98(60-112(211)212)181-131(227)88(40-45-109(205)206)171-127(223)84(35-23-29-51-154)168-122(218)80(156)31-19-25-47-150)123(219)161-63-106(200)166-86(38-43-107(201)202)126(222)165-77(17)120(216)176-97(59-111(209)210)134(230)170-81(32-20-26-48-151)124(220)164-76(16)121(217)177-99(61-113(213)214)140(236)191-117(74(13)14)147(243)184-96(58-105(159)199)139(235)190-116(73(11)12)146(242)183-93(55-70(5)6)137(233)192-118(78(18)196)148(244)173-82(33-21-27-49-152)125(221)163-75(15)119(215)167-83(34-22-28-50-153)128(224)185-100(64-193)141(237)175-90(149(245)246)37-42-103(157)197/h62,67-78,80-102,114-118,193-196H,19-61,63-66,150-156H2,1-18H3,(H2,157,197)(H2,158,198)(H2,159,199)(H,160,162)(H,161,219)(H,163,221)(H,164,220)(H,165,222)(H,166,200)(H,167,215)(H,168,218)(H,169,226)(H,170,230)(H,171,223)(H,172,229)(H,173,244)(H,174,240)(H,175,237)(H,176,216)(H,177,217)(H,178,238)(H,179,239)(H,180,231)(H,181,227)(H,182,241)(H,183,242)(H,184,243)(H,185,224)(H,186,225)(H,187,228)(H,188,232)(H,189,234)(H,190,235)(H,191,236)(H,192,233)(H,201,202)(H,203,204)(H,205,206)(H,207,208)(H,209,210)(H,211,212)(H,213,214)(H,245,246)/t75-,76-,77-,78+,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,114-,115-,116-,117-,118-/m0/s1
InChI Key
SCZQDVSMGSKHBG-LBKIEEQRSA-N
Canonical SMILES
CC(C)CC(C(=O)NCC(=O)NC(CCC(=O)O)C(=O)NC(C)C(=O)NC(CC(=O)O)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(CC(=O)O)C(=O)NC(C(C)C)C(=O)NC(CC(=O)N)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(CCCCN)C(=O)NC(CO)C(=O)NC(CCC(=O)N)C(=O)O)NC(=O)C(CO)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)O)NC(=O)C(CC1=CNC=N1)NC(=O)C(CO)NC(=O)C(CCC(=O)O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(C(C)C)NC(=O)C(CC(=O)N)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CCCCN)N
1. A radioimmunoassay for human parathyroid hormone utilizing a goat anti-bovine PTH serum
L E Mallette Acta Endocrinol (Copenh) . 1981 Feb;96(2):215-21. doi: 10.1530/acta.0.0960215.
An antiserum (NG-1) against bovine PTH (bPTH) generated in the domestic goat was characterized for use in the radioimmunoassay of PTH in human serum. When a carboxyterminal fragment of bPTH is used as radioligand, this antiserum detects only an antigenic site in the central region of the hPTH molecule. The synthetic hormone fragment, hPTH-(44-68), will displace 93% of the tracer, after which the addition of intact hPTH causes no further displacement. The assay does not detect the synthetic aminoterminal 1-34 fragment of the bovine or human hormones, nor the carboxyterminal fragment of the human hormone, hPTH-(53-84). Standard curves with bPTH-(1-84) and partially purified hPTH are not parallel, so that hPTH is used as standard. Serum from subjects with uraemia or primary hyperparathyroidism gives dilution curves parallel to that with the hPTH standard. The assay with NG-1 has been applied to the diagnosis of primary and secondary hyperparathyroidism, used to monitor the disappearance of PTH after parathyroidectomy, and for measurement of PTH in selective venous samples.
2. hPTH-fragments (53-84) and (28-48) antagonize the stimulation of calcium release and repression of alkaline phosphatase activity by hPTH-(1-34) in vitro
Christian Duvos, Hubert Mayer, Andrew Scutt FEBS Lett . 2006 Feb 20;580(5):1509-14. doi: 10.1016/j.febslet.2006.01.076.
Different C-terminal fragments of parathyroid hormone (PTH)-(1-84) in blood participate in the regulation of calcium homeostasis by PTH-(1-84), and an antagonizing effect for the large carboxyl-terminal parathyroid hormone (C-PTH)-fragment (7-84) on calcium release has been described in vivo and in vitro. In this study the smaller C-PTH-fragment (53-84) and mid-regional PTH fragment (28-48), which represent discrete areas of activity in the PTH-(7-84) molecule, were assayed for their effects on calcium release and alkaline phosphatase (ALP) activity in a chick bone organ culture system. Neither PTH-(28-48) nor PTH-(53-84) had any effect on calcium release into the medium and both fragments stimulated ALP activity in the bone tissue, suggesting that the cAMP/PKA signalling pathway was not affected by these fragments. However they suppressed the calcium release induced by PTH-(1-34) and attenuated the down regulation of ALP activity caused by PTH-(1-34), suggesting that the effect on the cAMP/PKA signalling pathway may be indirectly. In conclusion, the study shows that the PTH-fragments (53-84) and (28-48) antagonize the PTH-(1-34) induced effects on calcium release and inhibition of ALP activity in a chick bone organ culture system.
3. Parathyroid hormone metabolites in renal failure: bioactivity and clinical implications
Pierre D'Amour, Loan Nguyen Yamamoto, Jean-Hugues Brossard Semin Dial . 2002 May-Jun;15(3):196-201. doi: 10.1046/j.1525-139x.2002.00053.x.
Non-(1-84) parathyroid hormones (PTHs) are large circulating carboxyl-terminal PTH (C-PTH) fragments with a partially preserved amino-terminal structure. They were discovered during high-performance liquid chromatography (HPLC) analysis of circulating PTH molecular forms detected by an intact PTH (I-PTH) assay. Like other C-PTH fragments, they accumulate in blood in renal failure and account for up to 50% of I-PTH. They are secreted by the parathyroid glands in humans, and are generated by the peripheral metabolism of hPTH(1-84) in rats. The exact structure of non-(1-84)PTH fragments is not known. To study the possible role of non-(1-84) in PTH biology, hPTH(7-84) has been used as a surrogate, being the only large C fragment available on the market. In anesthetized, thyroparathyroidectomized rats, hPTH(7-84) caused hypocalcemia beyond that induced by surgery. It also blocked the calcemic response to hPTH(1-84) or hPTH(1-34). Other smaller C-PTH fragments, such as hPTH(39-84) and hPTH(53-84), were synergistic to hPTH(7-84) effects. hPTH(7-84) did not bind to the PTH/PTHrP receptor, but only to the C-PTH receptor in ROS 17/2.8 clonal cells, and did not stimulate cyclic adenosine monophosphate (cAMP) production by the same cells, suggesting that its hypocalcemic action was mediated via a receptor different from the PTH/PTHrP receptor, and that the calcium concentration resulted from the sum of the positive effect of hPTH(1-84) on the PTH/PTHrP receptor and of the negative effect of hPTH(7-84) and of C-PTH fragments on the C-PTH receptor. These data will change our understanding of circulating calcium regulation, which must now be viewed as the end result of opposite actions on two PTH receptors. PTH immunoheterogeneity, a highly regulated phenomenon, contributes to this dual biological effect, generating an agonist for the two different receptors. Clinically these results could have some implications in our knowledge of the PTH resistance of renal failure, of renal osteodystrophy, and of certain aspects of the uremic syndrome.
Online Inquiry
Verification code
Inquiry Basket