(R)-Boc-2-amino-3-phenylsulfanyl-propionic acid
Need Assistance?
  • US & Canada:
    +
  • UK: +

(R)-Boc-2-amino-3-phenylsulfanyl-propionic acid

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-001372
CAS number
163705-28-0
Molecular Formula
C14H19NO4S
Molecular Weight
297.37
IUPAC Name
(2R)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-phenylsulfanylpropanoic acid
Synonyms
Boc-L-Cys(phenyl)-OH; (2R)-2-{[(tert-butoxy)carbonyl]amino}-3-(phenylsulfanyl)propanoicacid
Appearance
White to off-white powder
Purity
≥ 99% (HPLC)
Density
1.22±0.1 g/cm3(Predicted)
Boiling Point
465.3±40.0 °C(Predicted)
Storage
Store at 2-8 °C
InChI
InChI=1S/C14H19NO4S/c1-14(2,3)19-13(18)15-11(12(16)17)9-20-10-7-5-4-6-8-10/h4-8,11H,9H2,1-3H3,(H,15,18)(H,16,17)/t11-/m0/s1
InChI Key
IBEVTCWKECBMJF-NSHDSACASA-N
Canonical SMILES
CC(C)(C)OC(=O)NC(CSC1=CC=CC=C1)C(=O)O
1. Enantioseparation of 3-Hydroxycarboxylic Acids via Diastereomeric Salt Formation by 2-Amino-1,2-diphenylethanol (ADPE) and Cinchonidine
Srinivas Chandrasekaran, Masaki Tambo, Yuta Yamazaki, Tatsuro Muramatsu, Yusuke Kanda, Takuji Hirose, Koichi Kodama Molecules. 2022 Dec 23;28(1):114. doi: 10.3390/molecules28010114.
Enantioseparation of 3-hydroxycarboxylic acids via diastereomeric salt formation was demonstrated using 2-amino-1,2-diphenylethanol (ADPE) and cinchonidine as the resolving agents. Racemic 3-hydroxy-4-phenylbutanoic acid (rac-1), 3-hydroxy-4-(4-chlorophenyl)butanoic acid (rac-2), and 3-hydroxy-5-phenylpentanoic acid (rac-3) were efficiently resolved using these resolving agents. Moreover, the successive crystallization of the less-soluble diastereomeric salt of 1 and cinchonidine using EtOH yielded pure (R)-1 · cinchonidine salt in a high yield. The crystal structures of less-soluble diastereomeric salts were elucidated and it was revealed that hydrogen bonding and CH/π interactions play an important role in reinforcing the structure of the less-soluble diastereomeric salts.
2. A Vegan Diet Is Associated with a Significant Reduction in Dietary Acid Load: Post Hoc Analysis of a Randomized Controlled Trial in Healthy Individuals
Alexander Müller, Amy Marisa Zimmermann-Klemd, Ann-Kathrin Lederer, Luciana Hannibal, Stefanie Kowarschik, Roman Huber, Maximilian Andreas Storz Int J Environ Res Public Health. 2021 Sep 23;18(19):9998. doi: 10.3390/ijerph18199998.
The composition of diet strongly affects acid-base homeostasis. Western diets abundant in acidogenic foods (meat and cheese) and deficient in alkalizing foods (fruits and vegetables) increase dietary acid load (DAL). A high DAL has been associated with numerous health repercussions, including cardiovascular disease and type-2-diabetes. Plant-based diets have been associated with a lower DAL; however, the number of trials exploring this association is limited. This randomized-controlled trial sought to examine whether an isocaloric vegan diet lowers DAL as compared to a meat-rich diet. Forty-five omnivorous individuals were randomly assigned to a vegan diet (n = 23) or a meat-rich diet (n = 22) for 4 weeks. DAL was determined using potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores at baseline and after 3 and 4 weeks, respectively. After 3 weeks, median PRAL (-23.57 (23.87)) and mean NEAPR (12.85 ± 19.71) scores were significantly lower in the vegan group than in the meat-rich group (PRAL: 18.78 (21.04) and NEAPR: 60.93 ± 15.51, respectively). Effects were mediated by a lower phosphorus and protein intake in the vegan group. Our study suggests that a vegan diet is a potential means to reduce DAL, whereas a meat-rich diet substantially increases the DAL burden.
3. Towards the biodegradation pathway of fosfomycin
K Pallitsch, A Schweifer, A Roller, F Hammerschmidt Org Biomol Chem. 2017 Apr 11;15(15):3276-3285. doi: 10.1039/c7ob00546f.
Three functionalised propylphosphonic acids were synthesised to study C-P bond cleavage in R. huakuii PMY1. (R)-1-Hydroxy-2-oxopropylphosphonic acid [(R)-5] was prepared by chiral resolution of (±)-dimethyl 1-hydroxy-2-methylallyllphosphonate [(±)-12], followed by ozonolysis and deprotection. The N-(l-alanyl)-substituted (1R,2R)-2-amino-1-hydroxypropylphosphonic acid 10, a potential precursor for 2-oxopropylphosphonic acid (5) in cells, was obtained by coupling the aminophosphonic acid with benzotriazole-activated Z-l-alanine and hydrogenolytic deprotection. (1R*,2R*)-1,2-Dihydroxy-3,3,3-trifluoropropylphosphonic acid, a potential inhibitor of C-P bond cleavage after conversion into its 2-oxo derivative in the cell, was accessed from trifluoroacetaldehyde hydrate via hydroxypropanenitrile 21, which was silylated and reduced to the aldehyde (±)-23. Diastereoselective addition of diethyl trimethylsilyl phosphite furnished diastereomeric α-siloxyphosphonates. The less polar one was converted to the desired racemic phosphonic acid (±)-(1R*,2R*)-9 as its ammonium salt.
Online Inquiry
Verification code
Inquiry Basket