RAGE antagonist peptide
Need Assistance?
  • US & Canada:
    +
  • UK: +

RAGE antagonist peptide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

RAGE antagonist peptide was produced as an inhibitor of the RAGE signaling pathway based on the RAGE-binding domain of high mobility group box-1 (HMGB1). It blocks S100P, S100A4 and HMGB-1 mediated RAGE activation in vitro and in vivo.

Category
Peptide Inhibitors
Catalog number
BAT-010311
CAS number
1092460-91-7
Molecular Formula
C57H101N13O17S
Molecular Weight
1272.56
RAGE antagonist peptide
IUPAC Name
(4S)-4-acetamido-5-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-oxopentanoic acid
Synonyms
Ac-Glu-Leu-Lys-Val-Leu-Met-Glu-Lys-Glu-Leu-NH2
Density
1.2±0.1 g/cm3
Boiling Point
1608.4±65.0°C at 760 mmHg
Sequence
ELKVLMEKEL
(Modifications: Glu-1 = N-terminal Ac, Leu-10 = C-terminal amide)
Storage
Store at -20°C
InChI
InChI=1S/C57H101N13O17S/c1-30(2)27-41(48(60)78)67-52(82)39(19-22-46(76)77)64-49(79)35(15-11-13-24-58)62-51(81)38(18-21-45(74)75)65-53(83)40(23-26-88-10)66-56(86)43(29-32(5)6)69-57(87)47(33(7)8)70-54(84)36(16-12-14-25-59)63-55(85)42(28-31(3)4)68-50(80)37(61-34(9)71)17-20-44(72)73/h30-33,35-43,47H,11-29,58-59H2,1-10H3,(H2,60,78)(H,61,71)(H,62,81)(H,63,85)(H,64,79)(H,65,83)(H,66,86)(H,67,82)(H,68,80)(H,69,87)(H,70,84)(H,72,73)(H,74,75)(H,76,77)/t35-,36-,37-,38-,39-,40-,41-,42-,43-,47-/m0/s1
InChI Key
UPCWJIBXKJZZLN-YZLORNOTNA-N
Canonical SMILES
CC(C)CC(C(=O)N)NC(=O)C(CCC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)O)NC(=O)C(CCSC)NC(=O)C(CC(C)C)NC(=O)C(C(C)C)NC(=O)C(CCCCN)NC(=O)C(CC(C)C)NC(=O)C(CCC(=O)O)NC(=O)C
1. CCR5 antagonist reduces HIV-induced amyloidogenesis, tau pathology, neurodegeneration, and blood-brain barrier alterations in HIV-infected hu-PBL-NSG mice
Georgette D Kanmogne, Jo Ellyn McMillan, Shawna M Woollard, Biju Bhargavan Mol Neurodegener . 2021 Nov 22;16(1):78. doi: 10.1186/s13024-021-00500-0.
Background:Neurocognitive impairment is present in 50% of HIV-infected individuals and is often associated with Alzheimer's Disease (AD)-like brain pathologies, including increased amyloid-beta (Aβ) and Tau hyperphosphorylation. Here, we aimed to determine whether HIV-1 infection causes AD-like pathologies in an HIV/AIDS humanized mouse model, and whether the CCR5 antagonist maraviroc alters HIV-induced pathologies.Methods:NOD/scid-IL-2Rγcnullmice engrafted with human blood leukocytes were infected with HIV-1, left untreated or treated with maraviroc (120 mg/kg twice/day). Human cells in animal's blood were quantified weekly by flow cytometry. Animals were sacrificed at week-3 post-infection; blood and tissues viral loads were quantified using p24 antigen ELISA, RNAscope, and qPCR. Human (HLA-DR+) cells, Aβ-42, phospho-Tau, neuronal markers (MAP 2, NeuN, neurofilament-L), gamma-secretase activating protein (GSAP), and blood-brain barrier (BBB) tight junction (TJ) proteins expression and transcription were quantified in brain tissues by immunohistochemistry, immunofluorescence, immunoblotting, and qPCR. Plasma Aβ-42, Aβ-42 cellular uptake, release and transendothelial transport were quantified by ELISA.Results:HIV-1 significantly decreased human (h)CD4+ T-cells and hCD4/hCD8 ratios; decreased the expression of BBB TJ proteins claudin-5, ZO-1, ZO-2; and increased HLA-DR+ cells in brain tissues. Significantly, HIV-infected animals showed increased plasma and brain Aβ-42 and phospho-Tau (threonine181, threonine231, serine396, serine199), associated with transcriptional upregulation of GSAP, an enzyme that catalyzes Aβ formation, and loss of MAP 2, NeuN, and neurofilament-L. Maraviroc treatment significantly reduced blood and brain viral loads, prevented HIV-induced loss of neuronal markers and TJ proteins; decreased HLA-DR+ cells infiltration in brain tissues, significantly reduced HIV-induced increase in Aβ-42, GSAP, and phospho-Tau. Maraviroc also reduced Aβ retention and increased Aβ release in human macrophages; decreased the receptor for advanced glycation end products (RAGE) and increased low-density lipoprotein receptor-related protein-1 (LRP1) expression in human brain endothelial cells. Maraviroc induced Aβ transendothelial transport, which was blocked by LRP1 antagonist but not RAGE antagonist.Conclusions:Maraviroc significantly reduced HIV-induced amyloidogenesis, GSAP, phospho-Tau, neurodegeneration, BBB alterations, and leukocytes infiltration into the CNS. Maraviroc increased cellular Aβ efflux and transendothelial Aβ transport via LRP1 pathways. Thus, therapeutically targeting CCR5 could reduce viremia, preserve the BBB and neurons, increased brain Aβ efflux, and reduce AD-like neuropathologies.
2. A RAGE-antagonist peptide potentiates polymeric micelle-mediated intracellular delivery of plasmid DNA for acute lung injury gene therapy
Myoungjee Choi, Chuanyu Zhuang, Junkyu Ha, Chunxian Piao, Minhyung Lee Nanoscale . 2020 Jul 2;12(25):13606-13617. doi: 10.1039/d0nr01367f.
Acute lung injury (ALI) is a severe inflammatory lung disease. A high mobility group box-1 (HMGB-1) derived RAGE-antagonist peptide (RAP) was previously developed for anti-inflammatory therapy for ALI. Due to its specific binding to RAGE on the surface of inflammatory cells, the RAP may facilitate polymer-mediated intracellular delivery of plasmid DNA (pDNA) into the inflammatory cells. To evaluate this hypothesis, a pDNA/polymer/RAP ternary-complex was produced and applied for ALI gene therapy. Dexamethasone-conjugated polyamidoamine G2 (PAM-D) was used as a gene carrier, and the adiponectin (APN) gene was employed as a therapeutic gene. First, the ratio of pDNA to PAM-D was optimized in terms of anti-inflammation and low toxicity. Then, the RAP was added to the pDNA/PAM-D complex, producing the pDNA/PAM-D/RAP complex. The transfection efficiency of the luciferase plasmid (pLuc)/PAM-D/RAP reached its maximum at a weight ratio of 1 : 2 : 9. At this weight ratio, pLuc/PAM-D/RAP had a higher transfection efficiency than pLuc/PAM-D or pLuc/RAP. The transfection efficiency of pLuc/PAM-D/RAP decreased due to competition with free RAPs, suggesting the RAGE-mediated endocytosis of the complex. In the LPS-activated ALI mouse models, intratracheal administration of APN plasmid (pAPN)/PAM-D/RAP induced higher APN expression and less pro-inflammatory cytokines in the lungs of ALI animal models than pAPN/PEI25k, pAPN/RAP, and pAPN/PAM-D. Hematoxylin and eosin staining confirmed the higher anti-inflammatory effect of pAPN/PAM-D/RAP than the other complexes in the ALI models. Therefore, RAP-mediated enhanced delivery of pAPN/PAM-D may be useful for the development of a treatment for ALI.
3. RP1, a RAGE antagonist peptide, can improve memory impairment and reduce Aβ plaque load in the APP/PS1 mouse model of Alzheimer's disease
Hui-Ru Luo, Shi-Song Fang, Fei Xiao, Yi-Yun Huang, Nian Fang, Feng Gao, Qing Zheng, Li-Li Zhou, Yao Zou, Qing-Ping Zeng Neuropharmacology . 2020 Dec 1;180:108304. doi: 10.1016/j.neuropharm.2020.108304.
Amyloid-β (Aβ) accumulation is a pathological hallmark of Alzheimer's disease (AD). The receptor for advanced glycation end products (RAGE) is involved in the production and accumulation of Aβ. RP1, a peptide antagonist of RAGE, was screened by phage display technology in our previous studies, and its neuroprotective effects on an AD cell model have been confirmed. However, its efficacy in vivo remains unclear. Here, the intranasal delivery of RP1 to APPSwe/PS1dE9 (APP/PS1) mice significantly improved memory impairment and relieved the Aβ burden by decreasing the expression of amyloid precursor protein and β-secretase. RNA-sequencing (RNA-seq) was utilized to identify differentially expressed genes (DEGs) in APP/PS1 mice after RP1 administration. Several DEGs in RAGE downstream signalling pathways were downregulated. Some transcription factors (such as Fos) and the pathways enriched in the remarkable modules may also be related to the efficacy of RP1. In conclusion, RP1 significantly improves the AD symptoms of APP/PS1 mice, and the RNA-seq results provide new ideas for elucidating the possible mechanisms of RP1 treatment.
Online Inquiry
Verification code
Inquiry Basket